Studies in Economic Theory Editors Charalambos D.Aliprantis Purdue University Department ofEconomics West Lafayette,in47907-2076 USA Nicholas C.Yannelis University ofIllinois Department ofEconomics Champaign,il61820 USA Titles in the Series M.A.Khanand N.C.Yannelis(Eds.) Equilibrium Theory in Infinite Dimensional Spaces C.D.Aliprantis,K.C.Border and W.A.J.Luxemburg(Eds.) Positive Operators,Riesz Spaces,and Economics D.G.Saari Geometry ofVoting C.D.Aliprantisand K.C.Border Infinite Dimensional Analysis J.-P.Aubin Dynamic Economic Theory M.Kurz(Ed.) Endogenous Economic Fluctuations J.-F.Laslier Tournament Solutions and Majority Voting A.Alkan,C.D.Aliprantisand N.C.Yannelis (Eds.) Theory and Applications J.C.Moore Mathematical Methods for Economic Theory 1 J.C.Moore Mathematical Methods for Economic Theory 2 M.Majumdar,T.Mitraand K.Nishimura Optimization and Chaos K.K.Sieberg Criminal Dilemmas M.Florenzanoand C.Le Van Finite Dimensional Convexity and Optimization K.Vind Independence,Additivity,Uncertainty T.Casonand C.Noussair(Eds.) Advances in Experimental Markets F.Aleskerovand B.Monjardet Utility Maximization.Choice and Preference N.Schofield Mathematical Methods in Economics and Social Choice C.D.Aliprantis,K.J.Arrow,P.Hammond, F.Kubler,H.-M.Wuand N.C.Yannelis(Eds.) Assets,Beliefs,and Equilibria in Economic Dynamics Dionysius Glycopantis Nicholas C.Yannelis Editors Differential Information Economies 123 Professor Dionysius Glycopantis City University Department ofEconomics Northhampton Square London EC1V OHB Great Britain Email:[email protected] Professor Nicholas C.Yannelis University ofIllinois Department ofEconomics 330 Commerce West Building Champaign,IL 61820,USA Email:[email protected] Parts ofthe papers ofthis volume have been published in the journal Economic Theory. Cataloging-in-Publication Data applied for Library ofCongress Control Number:2004114699 A catalog record for this book is available from the Library ofCongress. Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data available in the internet at http://dnb.ddb.de ISBN 3-540-21424-0 Springer Berlin Heidelberg New York This work is subject to copyright.All rights are reserved,whether the whole or part ofthe material is concerned,specifically the rights oftranslation,reprinting,reuse ofillustrations,recitation, broadcasting,reproduction on microfilm or in any other way,and storage in data banks.Dupli- cation ofthis publication or parts thereofis permitted only under the provisions ofthe German Copyright Law ofSeptember 9,1965,in its current version,and permission for use must always be obtained from Springer-Verlag.Violations are liable for prosecution under the German Copy- right Law. Springer is a part ofSpringer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use ofgeneral descriptive names,registered names,trademarks,etc.in this publication does not imply,even in the absence ofa specific statement,that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design:Erich Kirchner,Heidelberg Production:Helmut Petri Typesetting:Steingraeber Printing:betz-druck SPIN 10984734 Printed on acid-free paper – 42/3130 – 5 4 3 2 1 0 Preface It is not an exaggeration to say that all economic activity or all contracts among individuals in a society are made under conditions of uncertainty or incomplete information. Indeed, the need to introduce uncertainty in the classicalWalrasian equilibriummodel,wasfeltbyArrowandDebreu(1954)anditisexplicitlymodeled inChapter7oftheTheoryofValueofDebreu(1959). InChapter7ofthewell-knowntreatiseofDebreu(1959),itissuggestedthat once preferences and/or initial endowments are state dependent, i.e. they depend onafinitenumberofstatesofnatureoftheworld,andagents,whoarecompletely informed, maximize ex ante expected utility, then all the results on the existence andoptimalityoftheWalrasianequilibriumcontinuetohold. Radner (1968) went a step further, by introducing asymmetric or differential informationintotheArrow–Debreumodel.Inparticular,heassignedtoeachagent, in addition to his/her random initial endowment and random utility function, a privateinformationset,whichisameasurablepartitionoftheexogenouslygiven probabilitymeasurespace(whichdescribesthestatesofnatureoftheworld). Radner (1968) noticed that if all net trades reflect the private information of eachagent,(i.e.theyaremeasurablewithrespecttoσ-algebrathathis/herpartition generates),then,againthestandardexistenceandoptimalityresultsoftheWalrasian equilibriumconceptcontinuetohold,althoughsomepricesmightbenegative.This Walrasian expectations equilibrium notion (or Radner equilibrium) is an ex ante notion,andcapturestheideaofcontractsunderasymmetricinformation. Arelatedconcept,called“rationalexpectationsequilibrium”(REE),wasalso studied,e.g.,Kreps(1977),Radner(1979),Allen(1981),amongothers.TheREE is an interim notion and in this set up agents maximize (interim) expected utility functions,conditionedontheirownprivateinformationaswellastheinformation thattheequilibriumpricesgenerate. Given the fact that there is asymmetric information, a variety of equilibrium concepts could be put forward.We find the condition of the measurability of an allocationforREEasthebestwaytoproceed.Otherwisetheagentscalculatetheir demandswithoutbeingcertainabouttheirinitialendowmentsrealization. Unlike,theRadnerequilibrium,theREEneednotexistinwellbehavedeconomies, asshownbyKreps(1977),andmaynotbeParetooptimal,unlessutilityfunctions are state independent, and also it may not be Bayesian incentive compatible and maynotbeimplementableasaperfectBayesianequilibrium1ofanextensiveform game,(Glycopantis–Muir–Yannelis(2003)). 1Definitions of all concepts in this preface are given in the introductory chapter in this volume. VI Preface Theabovetwonotions,i.e.,RadnerequilibriumandREEarenon-cooperative solutionconcepts,i.e.,agentsmaximizeexanteorinterimutilityfunctionssubject totheirownbudgetconstraintandtheirown,initialoreventual,privateinforma- tionconstraint,independentlyofeachother,andwithoutsharingtheirownprivate information. In seminal papersWilson (1978) and Myerson (1984) introduced differential informationinthecoreandtheShapleyvaluerespectively.Notice,thatoncecoop- erationisallowed,thenabasicproblemwhicharisesishowtheprivateinformation willbesharedamongtheagentsinacoalition.Forexample,poolingofinformation maynotbethebestalternativeforanagentwhoiswellinformedandisexpected tocooperatewithanon-wellinformedagent.Also,usingcommonknowledgein- formationwithinacoalitionmaynotbesuchagreatideaforawellinformedagent whocannottakeadvantageofhis/herfineprivateinformation. To put it differently the issue of incentive compatibility of the information asymmetriesbecomesarealproblemthatneedstobeaddressed.Afterall,agents donotwanttobecheated,andatthesametimetheywouldliketowriteefficient contracts. This of course poses the following question: Is it possible for agents to write incentive compatible and Pareto optimal contracts? Let us answer this questionbyconsideringasimpletwoagentsexample. Example0.1 TherearetwoAgents,1and2,andthreeequallyprobablestatesof naturedenotedbya,b,candonegoodperstatedenotedbyx.Theutilityfunctions, initialendowmentsandprivateinformationsetsaregivenasfollows: √ u1(w,x1)= x1, forw =a,b,c √ u2(w,x2)= x2, forw =a,b,c e1(a,b,c)=(10,10,0), F1 ={{a,b},{c}} e2(a,b,c)=(10,0,10), F2 ={{a,c},{b}}. Notice that a “fully”, pooled information, Pareto optimal, (i.e. a weak fine core outcome)is x1(a,b,c)=(10,5,5) x2(a,b,c)=(10,5,5). (1) However,thisoutcomeisnotincentivecompatiblebecauseiftherealizedstate ofnatureisa,thenAgent1hasanincentivetoreportthatitisstatec,(noticethat Agent2cannotdistinguishstateafromstatec)andbecomebetteroff.Inparticular, Agent1willkeepherinitialendowmentintheevent{a,b}whichis10unitsand receiveanother5unitsfromAgent2,instatec,(i.e.,u1(e1(a)+x1(c)−e1(c))= u1(15)>u1(x(a))=10)andbecomesbetteroff.ObviouslyAgent2isworseoff. Similarly,Agent2hasanincentivetoreportbwhenheobserves{a,c} Thisexampledemonstratesthat“fullorexpostParetooptimality”isnotnec- essarilycompatiblewithincentivecompatibility. Most importantly, as it is known from Krasa–Yannelis (1994), the individual measurabilityofallocationsintheonegoodcasecharacterizesincentivecompati- bility.Thus,theonlycandidateintheaboveexampleforanincentivecompatible Preface VII allocation is the initial endowment which is dominated by the allocation in (1). Consequently, full Pareto optimal and incentive compatible allocations need not existastheaboveexampledemonstrates.2 Thus, if we were to produce positive existence results for cooperative solu- tionconceptswhichguaranteeincentivecompatibilityweshouldnotinsistonfull Paretooptimalitybutsome“constrainedinformational”Paretooptimality.Indeed, bydefiningcoresandvaluesindifferentialinformationeconomiesimposingmea- surabilityconstraints,oneisabletoproveexistenceandincentivecompatibilityof cooperativesolutionconcepts,(e.g.Yannelis(1991)andKrasa–Yannelis(1994)). Thefollowingexamplewillillustratetheroleoftheprivateinformationmea- surabilityofanallocation. Example0.2 TherearetwoAgents,1and2,twogoodsdenotedbyxandy and twoequallyprobablestatesdenotedby{a,b}.Theagents’characteristicsare: √ u1(w,x1,y1)= x1y1, forw =a,b √ u2(w,x2,y2)= x2y2, forw =a,b e1(a,b)=((10,0),(10,0)), F1 ={a,b} e2(a,b)=((10,8),(0,10)), F2 ={{a},{b}}. ThefeasibleallocationbelowisParetooptimal(interim,expostandexante). ((x1(a),y1(a)),(x1(b),y1(b)))=((5,4),(5,5)) ((x2(a),y2(a)),(x2(b),y2(b)))=((15,4),(5,5)). (2) However,theallocationin(2)aboveisnotincentivecompatiblebecauseifbisthe realizedstateofnatureAgent2canreportstateaandbecomebetteroff,i.e., u2(e2(b)+(x2(a),y2(a))−e2(a))=u2((0,10)+(15,4)−(10,8)) =u2(5,6)>u2(x2(b),y2(b))=u2(5,5). Noticethattheallocationin(2)isnotF1-measurable(i.e.,measurablewithrespect to the private information ofAgent 1). Hence, an individually rational, efficient (interim,exante,expost)withouttheF -measurability(i = 1,2)conditionneed i notbeincentivecompatible. Observe that one can restore the incentive compatibility simply by making theallocationin(2)aboveF -measurableforeachi,(i = 1,2).Inparticular,the i F -measurable allocation below is incentive compatible, and private information i (F -measurable)Paretooptimal. i (x1(a),y1(a)),(x1(b),y1(b))=((5,5),(5,5)) (x2(a),y2(a)),(x2(b),y2(b))=((15,3),(5,5)). Theimportanceofthemeasurabilityconditioninrestoringincentivecompati- bilityandofcourseguaranteeingtheexistenceofanoptimalcontractisobviousin theaboveexampleandthisapproachwasintroducedbyYannelis(1991). 2This example is taken from Koutsougeras–Yannelis (1993). It should be noted that Prescott-Townsend (1984) observed that the set of Pareto optimal and incentive com- patibleallocationsmaynotbeconvexandthereforeneednotexist.SeealsoAllen(2003). VIII Preface It is worth pointing out that two important, new features that distinguish the “partition approach” of modeling differential information (e.g., Radner (1968), Wilson(1978),amongothers)andthemechanismdesignorHarsanyi-typemodeling approach(e.g.,Myerson(1984),amongothers). First, as the examples above indicated, initial endowments are random and therefore the definition of incentive compatibility is different than the one found inthemechanismdesignliteraturewhereinitialendowments,iftheyareexplicitly stated,aretypicallyassumedtobeconstant. Second,asthereaderwillobserve,inseveralofthepapersinthisvolumethe incentivecompatibilityiscoalitionalratherthanindividual.Itisnotdifficulttosee bymeansofexamplesthatcontractsthatareindividualincentivecompatiblemaynot becoalitionalincentivecompatibleandthereforemaynotbeviable.Webelievethat thecoalitionalincentivecompatibilityismoreappropriateformultilateralcontracts. Thefollowingdemonstratesthis. Example 0.3 Consider a three person differential information economy, with Agents 1, 2, 3, two goods denoted by x,y, and the three equal probable states aredenotedbya,b,c.Theagents’utilityfunctions,randominitialendowmentsand privateinformationsetsareasfollows: √ u (x ,y )= x y , i=1,2,3, i i i i i e1(a,b,c)=((20,0),(20,0),(20,0)), F1 ={a,b,c} e2(a,b,c)=((0,10),(0,10),(0,5)), F2 ={{a,b},{c}} e3(a,b,c)=((10,10),(10,10),(20,30)), F2 ={{a},{b},{c}}. Theallocationbelowisindividualincentivecompatiblebutnotcoalitional. ((x1(a),y1(a)),(x1(b),y1(b)),(x1(c),y1(c)))=((10,5),(10,5),(12.5,7.5)) ((x2(a),y2(a)),(x2(b),y2(b)),(x2(c),y2(c)))=((10,5),(10,5),(2.5,2.5)) ((x3(a),y3(a)),(x3(b),y3(b)),(x3(c),y3(c)))=((10,10),(10,10),(25,25)). (3) NoticethatonlyAgent3cancheatAgents2and3instateaorb,byannouncingb andarespectively,buthasnoincentivetodoso.Hence,allocation(3)isindividual incentive compatible. However, Agents 2 and 3 can form a coalition and when statecoccurstheyreporttoAgent1stateb.Thus,Agent1gets(10,5)insteadof (12.5,7.5)andAgents2and3distributeamongthemselves2.5unitsofeachgood, andclearlyarebetteroff. Thereadermaywonderifthenewcooperativesolutionconceptsinadifferential informationeconomyprovideanynewinsightsthatcannotbecapturedbytheREE orWalrasianexpectationsequilibrium.Thefollowingexampledemonstratesthis. Example 0.4 Consider a three person economy, withAgents 1, 2, 3, one good denoted by x, and three equally probable states denoted by a,b,c. The agents’ utilityfunction,initialendowments,andprivateinformationsetsareasfollows: √ u = x , i=1,2,3 i i e1(a,b,c)=(5,5,0)), F1 ={{a,b},{c}} Preface IX e2(a,b,c)=(5,0,5), F2 ={{a,c},{b}} e3(a,b,c)=(0,0,0), F2 ={{a},{b},{c}}. TheallocationbelowisF -measurable(i=1,2,3)andcannotbeimprovedupon i byanyF -measurable,andfeasibleredistributionsoftheinitialendowmentsofany i coalition(thisistheprivatecore,Yannelis(1991)): x1(a,b,c)=(4,4,1) x2(a,b,c)=(4,1,4) x3(a,b,c)=(2,0,0). (4) Noticethattheallocationin(4)isincentivecompatibleinthesensethatAgent 3 is the only one who can cheatAgents 1 and 2 if the realized state of nature is a. However,Agent 3 has no incentive to misreport state a since this is the only state she gets positive consumption, and in any case one of Agents 1 or 2 will be able to tell the lie. Neither is it possible, as it can be easily seen, to form a coalition,profitabletobothmembers,andmisreportthestatetheyhaveobserved. Finally,noticethatifAgent3had“bad”information,i.e.,F(cid:1) ={a,b,c},then,ina 3 privatecoreallocation,shegetszeroconsumptionineachstate.Thus,advantageous informationistakenintoaccount. Contrary to the private core allocation in (4) above, neither the REE nor the Walrasianexpectationsequilibrium(orRadnerequilibrium)cancapturethisphe- nomenon.BothconceptsignoreAgent3nomatterhowfineherprivateinformation is, contrary to the private core which rewarded Agent 3 who used her superior informationtomakeaParetoimprovementforthewholeeconomy. TheaboveexamplesuggeststhattheREEmaynotbetheappropriateconcept to capture contracts under asymmetric information and a new price expectations equilibriummightbeneeded.Indeed,workinthisdirectionisrecentlybeingdone byTourky–Yannelis(2003)whoareintroducingapersonalizedpriceexpectations equilibriumnotion.ThisnotionexistsinsituationsthattheREEandRadnerequi- libriumfailtoexistanditcancharacterizetheprivatecore. Beforeweclose,wewouldliketoremarkthatdespitethefactthatthisbookhas discussed some successful alternative equilibrium concepts, other than the REE and Radner equilibrium, the issue of modeling continuum economies (perfectly competitiveeconomiesinthesenseofAumann(1964))isstillopen.Theproblem seemstocenterindefiningpreciselytheideaofeachagent’sprivateinformation asbeingnegligible. Acknowledgements.WearedeeplyindeptedtoourcoauthorAllanMuirforhisthougthful commentsandsuggestions.WealsowishtothankRokoAliprantiswhoencouragedustoput thisbookintheseriesStudiesinEconomicTheory.WernerMu¨llertheEditorofEconomics inSpringer(nowboughtbyKluwer)andhisstaffwereextremelyhelpfulandpatientduring thepreparationofthisvolume,andwesincerelyappreciatetheirkindassistance.Needlessto saywithoutthecontributionofalltheauthorsthisvolumewouldneverhavebeenproduced. X Preface References Allen,B.:Genericexistenceofcompletelyrevealingequilibriawithuncertainty,whenprices conveyinformation.Econometrica49,1173–1199(1981) Allen,B.:Incentivesandmarketgameswithasymmetricinformation.EconomicTheory21, 527–544(2003) Arrow,K.J.,Debreu,G.:Existenceofanequilibriuminacompetitiveeconomy.Econometrica 22,265–290(1954) Aumann,R.J.:Marketswithacontinuumoftraders.Econometrica32,39–50(1964) Debreu,G.:Theoryofvalue.NewYork:Wiley1959 Glycopantis,D.,Muir,A.,Yannelis,N.C.:Non-implementationofrationalexpectationsas aperfectBayesianequilibrium.Mimeo(2003) Koutsougeras,L.,Yannelis,N.C.:Incentivecompatibilityandinformationsuperiorityofthe coreofaneconomywithdifferentialinformation.EconomicTheory3,195–216(1993) Krasa,S.,Yannelis,N.C.:Thevalueallocationofaneconomywithdifferentialinformation. Econometrica62,881–900(1994) Kreps,M.D.:Anoteon‘fulfilledexpectations’equilibria.JournalofEconomicTheory14, 32–43(1977) Myerson,R.:Cooperativegameswithincompleteinformation.InternationalJournalofGame Theory13,69–96(1984) Prescott,E.,Townsend,R.:Paretooptimaandcompetitiveequilibriawithadverseselection andmoralhazard.Econometrica52,21–45(1984) Radner,R.:Competitiveequilibriumunderuncertainty.Econometrica36,31–58(1968) Radner,R.:Rationalexpectationequilibrium:genericexistenceandinformationrevealedby prices.Econometrica47,655–678(1979) Tourky,R.,Yannelis,N.C.:Privateexpectationsequilibria.Mimeo(2003) Wilson,R.:Information,efficiency,andthecoreofaneconomy.Econometrica46,807–816 (1978) Yannelis,N.C.:Thecoreofaneconomywithdifferentialinformation.EconomicTheory1, 183–198(1991) D.G. London,UK N.C.Y. Urbana-Champaign,IL,USA February8,2004