ebook img

Differential Geometry: Proceedings of the International Symposium held at Peñíscola, Spain, October 3–10, 1982 PDF

200 Pages·1984·2.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Geometry: Proceedings of the International Symposium held at Peñíscola, Spain, October 3–10, 1982

Lecture Notes in scitamehtaM det iydbE . Adl odDnna n.aBmkcE 1045 laitnereffiD yrtemoeG sgnidee cfoor Plmaun ioesihottpamnyrSetnI dtlaeh PeWscola, ,n iraepbSotcO 2891,ol-3 Edited by A. M. Naveira Springer-Verlag Berlin Heidelberg New York Tokyo 1984 Editor Antonio M. Naveira Departamento de Geometria y Topologia Facultad de Matem~ticas Burjasot, Valencia, Spain AMS Subject Classifications (1980): 22E, 53A, 53B, 53C, 57R, 57S, 58A, 58 B, 58 C, 58 G, 18 E ISBN 3-540-12882-4 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-12882-4 Springer-Verlag New York Heidelberg Berlin Tokyo Library of Congress Cataloging in Publication Main entry Data. under title: Differential geometry. (Lecture notes in mathematics; 1045) nI English and French. Proceedings of the Symposium on Differential Geometry. .1 Geometry, Differential-Congresses. .I A.M. Naveira, (Antonio 1940-. Martfnez), .II Symposium on Differential Geometry (1982: Spain) PeSfscola, III. Series: Lecture notes in mathematics 1045. (Springer-Verlag); QA3.L28 .on 1045 [QA641] 510s [516.3'6] 83-20457 ISBN 0-387-12882-4 ).S.U( This work is subject to copyright. All rights reserved, are whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine osri milar and means, storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than fee pri,,ate a use, is payable to "Verwertungsgesellschaft Wort", Munich. © by Springer-Verlag Berlin Heidelberg 1984 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210 PREFACE The present volume includes the texts of all lectures given at a Symposium on Differential Geometry which was held at Pe~fscola, Spain, from October 3 to i0, 1982. The Symposium was attended by some forty mathematicians from all over the world. There have been five International Symposia on Differential Geometry in Spain during the last twenty years. One of them took place in Sala- manca (1979), and the remaining four in Santiago de Compostela (1962, 1967,1972,1978). Of those, the first three ones were organized by Prof. E. Vidal Abascal and the last one was held in his hommage at his reti- rement. Our wish when organizing this Symposium has been to continue with this tradition initiated by Prof. Vidal Abascal to whom we express our deepest gratitude for his exemplary contribution to the development of Differential Geometry in Spain. We hope to be able to continue with this tradition by holding these meetings periodically. The Organizing Commitee of this Symposium is glad to express its grati- tude to all those who contributed to the success of the meeting and in particular to all participants. We also wish to express our sincere thanks to the Ministerio de Educaci6n, to the Facultad de Matem~ticas de Valencia, to the Diputaci6n Provincial de Castell6n for their gene- rous financial support, and to the Instituto de Administraci6n Local de Pen~scola for allowing us to use their premises during the Symposium. The facilities given by Springer-Verlag, and the co-operation of Prof. S. I. Andersson in our early contacts with the publishers are also gratefully acknowledged. Finally we wish to thank F. Marhuenda and J. Monterde for their careful typing of most of the manuscripts. A. M. Naveira President of the Organizing Commitee LIST OF PARTICIPANTS E. Abbena A. Gray U. Torino, Italy U. Maryland, U.S.A. .S I. Andersson J. Grifone U. Clausthal, West Germany U. Toulouse, France M. Asorey R. Langevin U. Zaragoza, Spain U. Dijon, France M. A. Baratta A. Lichnerowicz U. Parma, Italy Coll~ge de France, France M. Bendala F. Mascar6 U. Sevilla, Spain U. Valencia, Spain D. Bernard V. Miquel U. Strasbourg, France U. Valencia, Spain J. L. Cabrerizo A. Montesdeoca U. Sevilla, Spain U. La Laguna, Spain F. Carreras A. Montesinos U. Valencia, Spain U. Valencia, Spain .D Chinea A. M. Naveira U. La Laguna, Spain U. Valencia, Spain L. A. Cordero M. Nicolau U. Santiago, Spain U. Aut. Barcelona, Spain C. Curr~s-Bosch G. B. Rizza U. Barcelona, Spain U. Parma, Italy S. Donnini A. H. Rocamora U. Parma, Italy U. Pol. Valencia, Spain F. J. Echarte C. Romero U. Sevilla, Spain U. Valencia, Spain, and Southampton, United Kingdom J. Etayo U. Madrid, Spain A. Ros U. Granada, Spain M. Fernandez U. Santiago, Spain M. Sekizawa U. Tokyo, Japan M. Fernandez-AndrOs U.zSevilla, Spain R. Sivera U. Valencia, Spain A. Ferr~ndez U. Valencia, Spain F. Torres-Lopera U. Santiago, Spain E. Fossas U. Barcelona, Spain L. Vanhecke U. Leuven, Belgium .S Garbiero U. Torino, Italy F. Varela U. Murcia, Spain O. Gil Medrano U. Valencia, Spain J. L. Viviente U. Zaragoza, Spain. J. Girbau U. Aut. Barcelona, Spain TABLE OF CONTENTS S.I. ANDERSSON. Pseudodifferential operators and characteristic classes for non-abelian cohomology ......................... I M. ASOREY. Euclidean Yang-Mills flows in the orbit space ......... 11 D. BERNARD. Congruence, contact et rep~res de Frenet ............. 21 C. CURRAS-BOSCH. Killing vector fields and complex structures .... 36 J.J. ETAYO. Derivations in the tangent bundle .................... 43 J. GIRBAU. Some examples of deformations of the transversely holomorphic foliations ..................................... 53 J. GONZALO et F. VARELA. Sur certaines expressions globales d'une forme de contact ........................................... 63 J. GRIFONE et F. HASSAN. Connexions singuli~res et classe de Maslow ..................................................... 71 F. HASSAN. See J. GRIFONE. A. KUMPERA. Sur la cohomologie des syst~mes d'equatiens diff6- rentielles et des pseudogroupes de Lie ..................... 84 R. LANGEVIN. Energies et g6om6trie int6grale ..................... 95 A. LICHNEROWICZ. Geometry and cohomologies associated with a contact manifold ........................................... 104 J.F.T. LOPERA. A note on semisimple flat homogeneous spaces ...... 117 F. MASCARO. Some results on Diffg(~ n) ........................... 125 A. MONTESINOS. Some integral invariants of plane fields on riemannian manifolds ....................................... 134 A.M. NAVEIRA. A Schur-like Lemma for the NK-manifolds of constant type ............................................... 142 M. NICOLAU and M. REVENTOS. Compact Hausdorff foliations ......... 147 A. REVENTOS. See M. NICOLAU G.B. RIZZA. Nijenhuis tensor field and weakly K~hler manifolds... 154 C. ROMERO. Sphere stratifications and the Gauss map .............. 164 A. ROS. Spectral geometry of submanifolds in the complex projective space ........................................... 182 ILIV F. TRICERRI and L. VANHECKE. Self-dual and anti-self-dual homogeneous structures .................................... 186 L. VANHECKE. See F. TRICERRI. F. VARELA. See J. GONZALO. PSEUDODIFFERENTIAL OPERATORS AND CHARACTERISTIC CLASSES FOR NON-ABELIAN COHOMOLOGY Stig I. Andersson Institut f~r Theoretische Physik der Technischen Univ. Clausthal D-3392 Clausthal-Zellerfeld, FRG. 0. Introduction The object of study in this work is the interplay between analytic properties of pseudodifferential operators (psdo) on vector bundles and the geometry of the vector bundles themselves. Let X be a connected smooth n-manifold and EI------~ X, 2 E ) X and E ) X h P~ P vector bundles of dimensions ml, 2 m and m respectively. By S (El) , S (E 2 and S(E) we denote the smooth sections and PDiffk(Ei,E2 ) (Diffk(Ei,E ) 2 stands for the psdo (partial differential operators, pdo) of order k, mapping S(EI) ~ S (E2) . Given P~ PDiffk(Ei,E2) , by a lifting process we shall attach a connection operator Q: S (El®E) > S (E2®E) . Furthermore, by a procedure analogous to the Bott-Chern-Weil construction, we shall develop a naturally associated theory of characteristic classes, based however on a non-abelian cohomology theory. Modulo problems in the relevant homological algebra, forcing us to consider only the one and two dimensional cohomology sets, this provides a bridge between analytic properties of P and the vector bundle geometry. The construction extends the one of Asada'~AS i) for local operators. i. Asada Connections for Diffk(Ei,E2 ) To provide motivation for our later construction, we shall briefly review the essential steps in the construction of an Asada connection to a given pdo. P ~ Diffk(Ei,E ) 2 being a local object, taking restrictions to open sets is a transitive operation, hence the commutative diagram ( U open set) S(E1 ) P % S(E2) S (EI~ U) ) S (E2~ U) P~U Let (Ui,~i) be a locally trivializing atlas for E1and 2 E on X and write Pi: =P~U i. A local trivialization for I E Pl ~ X is then a VB-equivalence i F. -I i (U )x ~ ml Pl (Ui) > ~i i i U ) ~i(Ui ) -I where F~ : Pl (U.) ) U x C ml ~ ~i(Ui)x C ml defines the 1 l (~i x Id) fiber chart. For the sections we obtain the induced isomorphisms Z 1 -1 2 i : S (Pl (Ui) )~ (~i(Ui)~ ml ; Zi : S (P~I (Ui) ) S[~" (~i (Ui))]m2 (and analogously for S the sections with compact support). So locally c P induces the operator p : (U~) ml ) (Ui) m2 , Ui:=~i(U i) C Rn by (Z)-i Pi Zi For two charts Uiand 3 U • with U lj : =Ui~ U. 3 ~ ~ , we thus obtain the following commutative diagram, describing the compatibility condition on U 13 ln(s[> ] m,,.., .__~ SI (UI)] I m Pi izT ;t,, tij S(E ) I p, J with the transition functions -}t . :: Z .I (zl) j -I ' t~ lj :: io 2 z (z2)j -I for 3 l l l E and 2 E respectively. Define the (index-preserving) lifting ~ of P by ~i:S (EI®E~Ui)----) S (E2®E~U i) such that-~'k(~): (~k(P)®Id E (~'k(P) = symbol of P etc) . Explicitly in a chart, writing Pi a i , D~ (~ a multi-index) we define the lifting to be Pi:= ~--'~ (a~, i ~ Id E) D i- i,,~|.~ k In general the compatibility requirements are violated though for the lifting, i.e. ~i ~j ~j j ij where T[ .:=I tl .... ~e , T~ . :: . . t~ . . .@e , (e : transition function for E) lj 13 13 lj z3 13 lJ are the transition functions for EI®E and E2®E respectively. Definition: Q ={Q) with Qi ~ Diffr (EI®E~Ui,E2~E~Ui) for r < k, is an Asada E-connection of P iff(P + Q) ~ Diffk(EI®E,E2®E) i.e. , , 1 = T .2 o (~'. + Q~) on uij. (~i + Qi )° Tij lj 3 The obstruction Wij: : Q' i1 T - T ij lj .2 Q~ can be simply computed. Putting Q~ k~.,~= ~-I q~,i i'~D ' we obtain Wij =~ e~ D i~ where e~ = ~ (a~ , ~ i Id E) tij®eij - i D (tij@eij) = = ~ (~) D~'T I - 2 T (Jac . ~) with Jac..= the Jacobian f~|~(~k-I q°~'i " ij ij q~ ,j iJ ' lJ for the change of coordinates. On the symbol level, ~'k_i (Wij) : ep ~ . Assuming 0 = ~k_l (W) = . ...... = (~'k_j ; (W) there exists an E-connection of P of order ~ k-(j+2) iff ~" (W) : 0. k-(j+l) Here ~'k_j (W) = {~k_j (Wij ~ and we call ~'k_ (j+l) (W) the ~bstruction of order k-(j+2) . Computing, we obtain explicitly; assuming 0 = ~k_l (Wij)=....= ~-k_s+l (Wij) ~'k-s (W' )~ = - ~ (ao(,i ~iNldE ) ij l] ~p|=k-s (k- '~l41~,. := - s M .. (e..), defining the order s differential operator s M . . 13 13 13 locally. Example: s=l, (~'k_l (Wij)=- ~ [ ~. (a~+ I ~@i i ~ ---~---~ )] T! . ipi:k-1 i:i i' ~x(i)l ~3 : : - i M1(e )(t~ ij j~IdE)" The Asada construction is now completed by the following series of observations; i 0. ~-k_s(Wij) is a smooth section in the bundle G k_s~Uij where *T(S-ks~)2E,IE(moH .)E,E(moH@))X( ~k_s := 20" ~'k (W.. is independent of Q for order (Q)~ k-s. -s 13 30 • ~'k_s (W) = 0 in S(~k_s)~ there exists an order k-(s+I) E-connection of P. 40 " ~'k_s(Wlj) is a special 1-cocycle defines a Mittag-Leffler or Cousin I-distribution) since (~'k_s(Wij)T1 jr + T~ lj~'k-s(Wjr) ~--k - s(Wir ) on Uijr::U i U. 3 r U , and 1 T T~i~-k-s (Wij) ji = ~--k_s (Wj ) on Uij. It is now natural to view s M = [M~j (')] as a differential operator (of order s) on the sheaf S(Hom(E,E) ) with the image sheaf Ran(M C ) s S (X, ~k_s) . In particular, 0-k_s (Wij) ~ Ran(M~.) .13 Being a l-cocycle, ~-k_s(Wij) determines an obstruction class,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.