ebook img

Differential Equations with Boundary-Value Problems - Instructor PDF

614 Pages·2010·5.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Equations with Boundary-Value Problems - Instructor

REVIEW OF DIFFERENTIATION Rules d d 1. Constant: c=0 2. ConstantMultiple: cf(x)=cf(cid:0)(x) dx dx d d 3. Sum: [f(x) ± g(x)]=f(cid:0)(x)± g(cid:0)(x) 4. Product: f(x)g(x)= f(x)g(cid:0)(x) + g(x)f(cid:0)(x) dx dx d f(x) g(x)f(cid:0)(x)(cid:0) f(x)g(cid:0)(x) d 5. Quotient: = 6. Chain: f(g(x))= f(cid:0)(g(x))g(cid:0)(x) dx g(x) [g(x)]2 dx 7. Power: d xn =nxn(cid:0)1 8. Power: d [g(x)]n =n[g(x)]n(cid:0)1g(cid:0)(x) dx dx Functions Trigonometric: d d d 9. sinx=cosx 10. cosx=(cid:0)sinx 11. tanx=sec2 x dx dx dx d d d 12. cotx=(cid:0)csc2 x 13. secx=secxtanx 14. cscx=(cid:0)cscxcotx dx dx dx Inverse trigonometric: 15. d sin(cid:0)1 x= 1 16. d cos(cid:0)1 x=(cid:0) 1 17. d tan(cid:0)1 x= 1 dx 1(cid:0)x2 dx 1(cid:0)x2 dx 1+x2 18. d cot(cid:0)1 x=(cid:0) 1 19. d sec(cid:0)1 x= 1 20. d csc(cid:0)1 x=(cid:0) 1 dx 1+x2 dx x x2(cid:0)1 dx x x2(cid:0)1 Hyperbolic: d d d 21. sinhx=coshx 22. coshx=sinhx 23. tanhx=sech2 x dx dx dx d d d 24. cothx=(cid:0)csch2 x 25. sechx=(cid:0)sechxtanhx 26. cschx=(cid:0)cschxcothx dx dx dx Inverse hyperbolic: 27. d sinh(cid:0)1 x= 1 28. d cosh(cid:0)1 x= 1 29. d tanh(cid:0)1 x= 1 dx x2+1 dx x2(cid:0)1 dx 1(cid:0)x2 30. d coth(cid:0)1 x= 1 31. d sech(cid:0)1 x=(cid:0) 1 32. d csch(cid:0)1 x=(cid:0) 1 dx 1(cid:0)x2 dx x 1(cid:0)x2 dx x x2+1 Exponential: d d 33. ex =ex 34. bx =bx(lnb) dx dx Logarithmic: d 1 d 1 35. ln x = 36. log x= dx x dx b x(lnb) BRIEF TABLE OF INTEGRALS (cid:5) un(cid:1)1 (cid:5)1 1. undu(cid:2) (cid:1)C, n(cid:3)(cid:4)1 2. du(cid:2)ln u (cid:1)C n(cid:1)1 u (cid:5) (cid:5) 1 3. eudu(cid:2)eu (cid:1)C 4. audu(cid:2) au (cid:1)C lna (cid:5) (cid:5) 5. sin udu(cid:2)(cid:4)cos u(cid:1)C 6. cosudu(cid:2)sin u(cid:1)C (cid:5) (cid:5) 7. sec2udu(cid:2)tan u(cid:1)C 8. csc2udu(cid:2)(cid:4)cot u(cid:1)C (cid:5) (cid:5) 9. secutan udu(cid:2)secu(cid:1)C 10. cscucot udu(cid:2)(cid:4)cscu(cid:1)C (cid:5) (cid:5) 11. tan udu(cid:2)(cid:4)ln cos u (cid:1)C 12. cot udu(cid:2)ln sin u (cid:1)C (cid:5) (cid:5) 13. secudu(cid:2)ln secu(cid:1)tan u (cid:1)C 14. cscudu(cid:2)ln cscu(cid:4)cot u (cid:1)C (cid:5) (cid:5) 15. u sin udu(cid:2)sin u(cid:4)ucosu(cid:1)C 16. u cosudu(cid:2)cosu(cid:1) usin u(cid:1)C (cid:5) (cid:5) 17. sin2udu(cid:2) 1u(cid:4)1sin 2u (cid:1) C 18. cos2udu(cid:2) 1u(cid:1)1sin 2u (cid:1) C 2 4 2 4 (cid:5) (cid:5) 19. tan2udu(cid:2)tan u(cid:4)u (cid:1) C 20. cot2udu(cid:2)(cid:4)cot u(cid:4)u (cid:1) C (cid:5) (cid:6) (cid:7) (cid:5) (cid:6) (cid:7) 21. sin3udu(cid:2)(cid:4)1 2(cid:1)sin2u cosu (cid:1) C 22. cos3udu(cid:2) 1 2(cid:1)cos2u sin u (cid:1) C 3 3 (cid:5) (cid:5) 23. tan3udu(cid:2) 1tan2u(cid:1) ln cos u (cid:1) C 24. cot3udu(cid:2)(cid:4)1cot2u(cid:4) ln sin u (cid:1) C 2 2 (cid:5) (cid:5) 25. sec3udu(cid:2) 1secutanu(cid:1)1ln secu(cid:1)tanu (cid:1)C 26. csc3udu(cid:2)(cid:4)1cscucotu(cid:1)1ln cscu(cid:4)cotu (cid:1)C 2 2 2 2 (cid:5) sin(a(cid:4)b)u sin(a(cid:1)b)u (cid:5) sin(a(cid:4)b)u sin(a(cid:1)b)u 27. sin aucosbudu(cid:2) (cid:4) (cid:1) C 28. cos aucosbudu(cid:2) (cid:1) (cid:1) C 2(a(cid:4)b) 2(a(cid:1)b) 2(a(cid:4)b) 2(a(cid:1)b) 29. (cid:5)eausin budu(cid:2) eau (cid:6)asin bu(cid:4)bcosbu(cid:7)(cid:1)C 30. (cid:5)eaucos budu(cid:2) eau (cid:6)acosbu(cid:1)bsin bu(cid:7)(cid:1)C a2(cid:1)b2 a2(cid:1)b2 (cid:5) (cid:5) 31. sinh udu(cid:2)cosh u(cid:1)C 32. cosh udu(cid:2)sinh u(cid:1)C (cid:5) (cid:5) 33. sech2udu(cid:2)tanh u(cid:1)C 34. csch2udu(cid:2)(cid:4)coth u(cid:1)C (cid:5) (cid:5) 35. tanh udu(cid:2)ln(cosh u)(cid:1)C 36. coth udu(cid:2)ln sinh u (cid:1)C (cid:5) (cid:5) 37. ln udu(cid:2)ulnu(cid:4)u(cid:1)C 38. uln udu(cid:2) 1u2lnu(cid:4)1u2(cid:1)C 2 4 (cid:5) 1 u (cid:5) 1 39. du(cid:2)sin(cid:4)1 (cid:1)C 40. du(cid:2)ln u(cid:1) a2 (cid:1) u2 (cid:1)C a2(cid:4)u2 a a2(cid:1) u2 (cid:5) u a2 u (cid:5) u a2 41. a2(cid:4)u2 du(cid:2) a2(cid:4)u2 (cid:1) sin(cid:4)1 (cid:1)C 42. a2(cid:1) u2 du(cid:2) a2(cid:1) u2 (cid:1) ln u(cid:1) a2(cid:1) u2 (cid:1)C 2 2 a 2 2 (cid:5) 1 1 u (cid:5) 1 1 a(cid:1)u 43. du(cid:2) tan(cid:4)1 (cid:1) C 44. du(cid:2) ln (cid:1) C a2(cid:1)u2 a a a2(cid:4)u2 2a a(cid:4)u Note: Some techniques of integration, such as integration by parts and partial fractions, are reviewed in the Student Resource and Solutions Manual that accompanies this text. TABLE OF LAPLACE TRANSFORMS f(t) (cid:1){f(t)}(cid:7)F(s) f(t) (cid:1){f(t)}(cid:7)F(s) 1 k 1. 1 20. eatsinhkt s (s(cid:1)a)2(cid:1)k2 1 s(cid:1)a 2. t 21. eatcoshkt s2 (s(cid:1)a)2(cid:1)k2 n! 2ks 3. tn , na positive integer 22. tsinkt sn(cid:2)1 (s2(cid:2)k2)2 (cid:6) s2(cid:1)k2 4. t(cid:1)1/2 23. tcoskt Bs (s2(cid:2)k2)2 1(cid:6) 2ks2 5. t1/2 24. sinkt(cid:2)ktcoskt 2s3/2 (s2(cid:2)k2)2 (cid:3)((cid:4)(cid:2)1) 2k3 6. ta , a(cid:5)(cid:1)1 25. sinkt(cid:1)ktcoskt s(cid:4)(cid:2)1 (s2(cid:2)k2)2 k 2ks 7. sinkt 26. tsinhkt s2(cid:2)k2 (s2(cid:1)k2)2 s s2(cid:2)k2 8. coskt 27. tcoshkt s2(cid:2)k2 (s2(cid:1)k2)2 2k2 eat(cid:1)ebt 1 9. sin2kt 28. s(s2(cid:2)4k2) a(cid:1)b (s(cid:1)a)(s(cid:1)b) s2(cid:2)2k2 aeat(cid:1)bebt s 10. cos2kt 29. s(s2(cid:2)4k2) a(cid:1)b (s(cid:1)a)(s(cid:1)b) 1 k2 11. eat 30. 1(cid:1)coskt s(cid:1)a s(s2(cid:2)k2) k k3 12. sinhkt 31. kt(cid:1)sinkt s2(cid:1)k2 s2(s2(cid:2)k2) s a sin bt(cid:1)b sin at 1 13. coshkt 32. s2(cid:1)k2 ab(a2(cid:1)b2) (s2(cid:2)a2)(s2(cid:2)b2) 2k2 cosbt(cid:1)cosat s 14. sinh2kt 33. s(s2(cid:1)4k2) a2(cid:1)b2 (s2(cid:2)a2)(s2(cid:2)b2) s2(cid:1)2k2 2k2s 15. cosh2kt 34. sinktsinhkt s(s2(cid:1)4k2) s4(cid:2)4k4 1 k(s2(cid:2)2k2) 16. teat 35. sinktcoshkt (s(cid:1)a)2 s4(cid:2)4k4 n! k(s2(cid:1)2k2) 17. tneat , na positive integer 36. cosktsinhkt (s(cid:1)a)n(cid:2)1 s4(cid:2)4k4 k s3 18. eatsinkt 37. cosktcoshkt (s(cid:1)a)2(cid:2)k2 s4(cid:2)4k4 s(cid:1)a 1 19. eatcoskt 38. J (kt) (s(cid:1)a)2(cid:2)k2 0 1s2(cid:2)k2 This page intentionally left blank SEVENTH EDITION DIFFERENTIAL EQUATIONS with Boundary-Value Problems This page intentionally left blank SEVENTH EDITION DIFFERENTIAL EQUATIONS with Boundary-Value Problems DENNIS G. ZILL Loyola Marymount University MICHAEL R. CULLEN Late of Loyola Marymount University Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Differential Equations with © 2009,2005 Brooks/Cole,Cengage Learning Boundary-Value Problems, ALL RIGHTS RESERVED.No part of this work covered by the Seventh Edition copyright herein may be reproduced,transmitted,stored,or used Dennis G.Zill and Michael R.Cullen inany form or by any means graphic,electronic,or mechanical, Executive Editor:Charlie Van Wagner including but not limited to photocopying,recording,scanning, digitizing,taping,Web distribution,information networks,or Development Editor:Leslie Lahr information storage and retrieval systems,except as permitted Assistant Editor:Stacy Green under Section 107 or 108 of the 1976 United States Copyright Editorial Assistant:Cynthia Ashton Act,without the prior written permission of the publisher. Technology Project Manager:Sam Subity For product information and technology assistance,contact us at Marketing Specialist:Ashley Pickering Cengage Learning Customer & Sales Support,1-800-354-9706. Marketing Communications Manager: For permission to use material from this text or product, Darlene Amidon-Brent submit all requests online at cengage.com/permissions. Further permissions questions can be e-mailed to Project Manager,Editorial [email protected]. Production:Cheryll Linthicum Creative Director:Rob Hugel Library of Congress Control Number:2008924835 Art Director:Vernon Boes ISBN-13:978-0-495-10836-8 Print Buyer:Rebecca Cross ISBN-10:0-495-10836-7 Permissions Editor:Mardell Glinski Schultz Brooks/Cole Production Service:Hearthside 10 Davis Drive Publishing Services Belmont,CA 94002-3098 Text Designer:Diane Beasley USA Photo Researcher:Don Schlotman Cengage Learning is a leading provider of customized learning Copy Editor:Barbara Willette solutions with office locations around the globe,including Singapore, Illustrator:Jade Myers,Matrix the United Kingdom,Australia,Mexico,Brazil,and Japan.Locate Cover Designer:Larry Didona yourlocal office at international.cengage.com/region. Cover Image:© Getty Images Cengage Learning products are represented in Canada by Compositor:ICC Macmillan Inc. Nelson Education,Ltd. For your course and learning solutions,visit academic.cengage.com. Purchase any of our products at your local college store or at our preferred online store www.ichapters.com. Printed in Canada 1 2 3 4 5 6 7 12 11 10 09 08 CONTENTS Preface xi 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 1 1.1 Definitions and Terminology 2 1.2 Initial-Value Problems 13 1.3 Differential Equations as Mathematical Models 19 CHAPTER 1 IN REVIEW 32 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 34 2.1 Solution Curves Without a Solution 35 2.1.1 Direction Fields 35 2.1.2 Autonomous First-Order DEs 37 2.2 Separable Variables 44 2.3 Linear Equations 53 2.4 Exact Equations 62 2.5 Solutions by Substitutions 70 2.6 A Numerical Method 75 CHAPTER 2 IN REVIEW 80 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS 82 3.1 Linear Models 83 3.2 Nonlinear Models 94 3.3 Modeling with Systems ofFirst-Order DEs 105 CHAPTER 3 IN REVIEW 113 v

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.