DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES Third Edition TEXTBOOKS in MATHEMATICS Series Editors: Al Boggess and Ken Rosen PUBLISHED TITLES ABSTRACT ALGEBRA: AN INTERACTIVE APPROACH, SECOND EDITION William Paulsen ABSTRACT ALGEBRA: AN INQUIRY-BASED APPROACH Jonathan K. Hodge, Steven Schlicker, and Ted Sundstrom ADVANCED LINEAR ALGEBRA Hugo Woerdeman APPLIED ABSTRACT ALGEBRA WITH MAPLE™ AND MATLAB®, THIRD EDITION Richard Klima, Neil Sigmon, and Ernest Stitzinger APPLIED DIFFERENTIAL EQUATIONS: THE PRIMARY COURSE Vladimir Dobrushkin COMPUTATIONAL MATHEMATICS: MODELS, METHODS, AND ANALYSIS WITH MATLAB® AND MPI, SECOND EDITION Robert E. White DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE, SECOND EDITION Steven G. Krantz DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE WITH BOUNDARY VALUE PROBLEMS Steven G. Krantz DIFFERENTIAL EQUATIONS WITH MATLAB®: EXPLORATION, APPLICATIONS, AND THEORY Mark A. McKibben and Micah D. Webster ELEMENTARY NUMBER THEORY James S. Kraft and Lawrence C. Washington EXPLORING LINEAR ALGEBRA: LABS AND PROJECTS WITH MATHEMATICA® Crista Arangala GRAPHS & DIGRAPHS, SIXTH EDITION Gary Chartrand, Linda Lesniak, and Ping Zhang INTRODUCTION TO ABSTRACT ALGEBRA, SECOND EDITION Jonathan D. H. Smith TEXTBOOKS in MATHEMATICS TEXTBOOKS in MATHEMATICS Series Editors: Al Boggess and Ken Rosen PUBLISHED TITLES ABSTRACT ALGEBRA: AN INTERACTIVE APPROACH, SECOND EDITION DIFFERENTIAL EQUATIONS William Paulsen ABSTRACT ALGEBRA: AN INQUIRY-BASED APPROACH WITH APPLICATIONS AND Jonathan K. Hodge, Steven Schlicker, and Ted Sundstrom HISTORICAL NOTES ADVANCED LINEAR ALGEBRA Hugo Woerdeman Third Edition APPLIED ABSTRACT ALGEBRA WITH MAPLE™ AND MATLAB®, THIRD EDITION Richard Klima, Neil Sigmon, and Ernest Stitzinger APPLIED DIFFERENTIAL EQUATIONS: THE PRIMARY COURSE Vladimir Dobrushkin COMPUTATIONAL MATHEMATICS: MODELS, METHODS, AND ANALYSIS WITH MATLAB® AND MPI, SECOND EDITION Robert E. White DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE, SECOND EDITION Steven G. Krantz DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE WITH BOUNDARY VALUE PROBLEMS Steven G. Krantz George F. Simmons DIFFERENTIAL EQUATIONS WITH MATLAB®: EXPLORATION, APPLICATIONS, AND THEORY Mark A. McKibben and Micah D. Webster ELEMENTARY NUMBER THEORY James S. Kraft and Lawrence C. Washington EXPLORING LINEAR ALGEBRA: LABS AND PROJECTS WITH MATHEMATICA® Crista Arangala GRAPHS & DIGRAPHS, SIXTH EDITION Gary Chartrand, Linda Lesniak, and Ping Zhang INTRODUCTION TO ABSTRACT ALGEBRA, SECOND EDITION Jonathan D. H. Smith CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20160815 International Standard Book Number-13: 978-1-4987-0259-1 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a photo- copy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com For Hope and Nancy my wife and daughter who still make it all worthwhile Contents Preface to the Third Edition .................................................................................xi Preface to the Second Edition ............................................................................xiii Preface to the First Edition ...................................................................................xv Suggestions for the Instructor ...........................................................................xix About the Author ................................................................................................xxi 1. The Nature of Differential Equations. Separable Equations ................1 1 Introduction ...........................................................................................1 2 General Remarks on Solutions ............................................................4 3 Families of Curves. Orthogonal Trajectories ..................................11 4 Growth, Decay, Chemical Reactions, and Mixing..........................19 5 Falling Bodies and Other Motion Problems ...................................31 6 The Brachistochrone. Fermat and the Bernoullis ...........................40 Appendix A: Some Ideas From the Theory of Probability: The Normal Distribution Curve (or Bell Curve) and Its Differential Equation ................................................................................51 2. First Order Equations ..................................................................................65 7 Homogeneous Equations ...................................................................65 8 Exact Equations ...................................................................................69 9 Integrating Factors ..............................................................................74 10 Linear Equations .................................................................................81 11 Reduction of Order .............................................................................85 12 The Hanging Chain. Pursuit Curves ...............................................88 13 Simple Electric Circuits ......................................................................95 3. Second Order Linear Equations...............................................................107 14 Introduction .......................................................................................107 15 The General Solution of the Homogeneous Equation .................113 16 The Use of a Known Solution to find Another .............................119 17 The Homogeneous Equation with Constant Coefficients ...........122 18 The Method of Undetermined Coefficients ..................................127 19 The Method of Variation of Parameters .........................................133 20 Vibrations in Mechanical and Electrical Systems ........................136 21 Newton’s Law of Gravitation and The Motion of the Planets ......146 22 Higher Order Linear Equations. Coupled Harmonic Oscillators .......................................................................155 23 Operator Methods for Finding Particular Solutions ....................161 Appendix A. Euler .......................................................................................170 Appendix B. Newton ...................................................................................179 vii viii Contents 4. Qualitative Properties of Solutions ........................................................187 24 Oscillations and the Sturm Separation Theorem .........................187 25 The Sturm Comparison Theorem ...................................................194 5. Power Series Solutions and Special Functions .....................................197 26 Introduction. A Review of Power Series ........................................197 27 Series Solutions of First Order Equations ......................................206 28 Second Order Linear Equations. Ordinary Points .......................210 29 Regular Singular Points ...................................................................219 30 Regular Singular Points (Continued) .............................................229 31 Gauss’s Hypergeometric Equation .................................................236 32 The Point at Infinity ..........................................................................242 Appendix A. Two Convergence Proofs ....................................................246 Appendix B. Hermite Polynomials and Quantum Mechanics ..............250 Appendix C. Gauss ......................................................................................262 Appendix D. Chebyshev Polynomials and the Minimax Property ......270 Appendix E. Riemann’s Equation .............................................................278 6. Fourier Series and Orthogonal Functions .............................................289 33 The Fourier Coefficients ...................................................................289 34 The Problem of Convergence ..........................................................301 35 Even and Odd Functions. Cosine and Sine Series .......................310 36 Extension to Arbitrary Intervals .....................................................319 37 Orthogonal Functions ......................................................................325 38 The Mean Convergence of Fourier Series ......................................336 Appendix A. A Pointwise Convergence Theorem ..................................345 7. Partial Differential Equations and Boundary Value Problems ........351 39 Introduction. Historical Remarks ...................................................351 40 Eigenvalues, Eigenfunctions, and the Vibrating String ..............355 41 The Heat Equation ............................................................................366 42 The Dirichlet Problem for a Circle. Poisson’s Integral .................372 43 Sturm–Liouville Problems ...............................................................379 Appendix A. The Existence of Eigenvalues and Eigenfunctions ..........388 8. Some Special Functions of Mathematical Physics ..............................393 44 Legendre Polynomials ......................................................................393 45 Properties of Legendre Polynomials ..............................................400 46 Bessel Functions. The Gamma Function .......................................407 47 Properties of Bessel Functions ........................................................418 Appendix A. Legendre Polynomials and Potential Theory ...................427 Appendix B. Bessel Functions and the Vibrating Membrane ................435 Appendix C. Additional Properties of Bessel Functions ........................441 Contents ix 9. Laplace Transforms ....................................................................................447 48 Introduction .......................................................................................447 49 A Few Remarks on the Theory .......................................................452 50 Applications to Differential Equations ..........................................457 51 Derivatives and Integrals of Laplace Transforms ........................463 52 Convolutions and Abel’s Mechanical Problem .............................468 53 More about Convolutions. The Unit Step and Impulse Functions ............................................................................475 Appendix A. Laplace ...................................................................................483 Appendix B. Abel .........................................................................................484 10. Systems of First Order Equations............................................................487 54 General Remarks on Systems ..........................................................487 55 Linear Systems ...................................................................................491 56 Homogeneous Linear Systems with Constant Coefficients ........498 57 Nonlinear Systems. Volterra’s Prey-Predator Equations .............507 11. Nonlinear Equations ..................................................................................513 58 Autonomous Systems. The Phase Plane and Its Phenomena .....513 59 Types of Critical Points. Stability ....................................................519 60 Critical Points and Stability for Linear Systems ...........................529 61 Stability By Liapunov’s Direct Method ..........................................541 62 Simple Critical Points of Nonlinear Systems ................................547 63 Nonlinear Mechanics. Conservative Systems ...............................557 64 Periodic Solutions. The Poincaré–Bendixson Theorem ...............563 65 More about the van der Pol Equation.............................................572 Appendix A. Poincaré .................................................................................574 Appendix B. Proof of Liénard’s Theorem ................................................576 12. The Calculus of Variations .......................................................................581 66 Introduction. Some Typical Problems of the Subject ...................581 67 Euler’s Differential Equation for an Extremal ..............................584 68 Isoperimetric Problems ....................................................................595 Appendix A. Lagrange ................................................................................606 Appendix B. Hamilton’s Principle and Its Implications ........................608 13. The Existence and Uniqueness of Solutions .........................................621 69 The Method of Successive Approximations ..................................621 70 Picard’s Theorem ...............................................................................626 71 Systems. The Second Order Linear Equation ...............................638 14. Numerical Methods ...................................................................................643 By John S. Robertson 72 Introduction .......................................................................................643
Description: