ebook img

Differential Equations: From Calculus to Dynamical Systems PDF

414 Pages·2019·5.593 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Equations: From Calculus to Dynamical Systems

AMS / MAA TEXTBOOKS VOL 43 Differential Equations: From Calculus to Dynamical Systems Second Edition Virginia W. Noonburg Differential Equations: From Calculus to Dynamical Systems Second Edition AMS/MAA TEXTBOOKS VOL 43 Differential Equations: From Calculus to Dynamical Systems Second Edition Virginia W. Noonburg CommitteeonBooks JenniferJ.Quinn,Chair MAATextbooksEditorialBoard StanleyE.Seltzer,Editor BelaBajnok CharlesR.Hampton JeffreyL.Stuart MatthiasBeck SuzanneLynneLarson RonD.Taylor,Jr. HeatherAnnDye JohnLorch ElizabethThoren WilliamRobertGreen MichaelJ.McAsey RuthVanderpool 2010MathematicsSubjectClassification.Primary34-01,35-01. Foradditionalinformationandupdatesonthisbook,visit www.ams.org/bookpages/text-43 LibraryofCongressCataloging-in-PublicationData Names: Noonburg,V.W.(VirginiaWalbran),1931–author. |Noonburg,V.W.(VirginiaWalbran),1931– Ordinarydifferentialequations. Title:Differentialequations:Fromcalculustodynamicalsystems/VirginiaW.Noonburg. Othertitles:Ordinarydifferentialequations Description: Secondedition. |Providence,RhodeIsland: MAAPress,animprintoftheAmericanMathe- maticalSociety,[2019]|Series:AMS/MAAtextbooks;volume43|Includesanindex. Identifiers:LCCN2018025154|ISBN9781470444006(alk.paper) Subjects: LCSH:Differentialequations. |AMS:Ordinarydifferentialequations–Instructionalexposition (textbooks,tutorialpapers,etc.).msc|Partialdifferentialequations–Instructionalexposition(textbooks, tutorialpapers,etc.).msc Classification:LCCQA371.N582019|DDC515/.35–dc23 LCrecordavailableathttps://lccn.loc.gov/2018025154 Copyingandreprinting. Individualreadersofthispublication,andnonprofitlibrariesactingforthem, arepermittedtomakefairuseofthematerial,suchastocopyselectpagesforuseinteachingorresearch. Permissionisgrantedtoquotebriefpassagesfromthispublicationinreviews,providedthecustomaryac- knowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublicationispermit- tedonlyunderlicensefromtheAmericanMathematicalSociety.Requestsforpermissiontoreuseportions ofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. Formoreinformation,please visitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. ©2019bytheAmericanMathematicalSociety.Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. ⃝1Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttps://www.ams.org/ 10987654321 242322212019 Contents Preface ix Acknowledgments ix 1 IntroductiontoDifferentialEquations 1 1.1 BasicTerminology 2 1.1.1 Ordinaryvs.PartialDifferentialEquations 2 1.1.2 IndependentVariables,DependentVariables,andParameters 3 1.1.3 OrderofaDifferentialEquation 3 1.1.4 WhatisaSolution? 3 1.1.5 SystemsofDifferentialEquations 5 1.2 FamiliesofSolutions,Initial-ValueProblems 6 1.3 ModelingwithDifferentialEquations 11 2 First-orderDifferentialEquations 19 2.1 SeparableFirst-orderEquations 20 2.1.1 Application1: PopulationGrowth 23 2.1.2 Application2: Newton’sLawofCooling 25 2.2 GraphicalMethods,theSlopeField 28 2.2.1 UsingGraphicalMethodstoVisualizeSolutions 32 2.3 LinearFirst-orderDifferentialEquations 36 2.3.1 Application: Single-compartmentMixingProblem 41 2.4 ExistenceandUniquenessofSolutions 44 2.5 MoreAnalyticMethodsforNonlinearFirst-orderEquations 51 2.5.1 ExactDifferentialEquations 51 2.5.2 BernoulliEquations 56 2.5.3 UsingSymmetriesoftheSlopeField 58 2.6 NumericalMethods 59 2.6.1 Euler’sMethod 60 2.6.2 ImprovedEulerMethod 64 2.6.3 Fourth-orderRunge-KuttaMethod 66 2.7 AutonomousEquations,thePhaseLine 71 2.7.1 Stability—Sinks,Sources,andNodes 73 BifurcationinEquationswithParameters 74 3 Second-orderDifferentialEquations 81 3.1 GeneralTheoryofHomogeneousLinearEquations 82 3.2 HomogeneousLinearEquationswithConstantCoefficients 88 3.2.1 Second-orderEquationwithConstantCoefficients 88 v vi Contents 3.2.2 EquationsofOrderGreaterThanTwo 93 3.3 TheSpring-massEquation 95 3.3.1 DerivationoftheSpring-massEquation 95 3.3.2 TheUnforcedSpring-massSystem 96 3.4 NonhomogeneousLinearEquations 102 3.4.1 MethodofUndeterminedCoefficients 102 3.4.2 VariationofParameters 109 3.5 TheForcedSpring-massSystem 114 BeatsandResonance 117 3.6 LinearSecond-orderEquationswithNonconstantCoefficients 125 3.6.1 TheCauchy-EulerEquation 125 3.6.2 SeriesSolutions 127 3.7 AutonomousSecond-orderDifferentialEquations 135 3.7.1 NumericalMethods 136 3.7.2 AutonomousEquationsandthePhasePlane 137 4 LinearSystemsofFirst-orderDifferentialEquations 145 4.1 IntroductiontoSystems 146 4.1.1 WritingDifferentialEquationsasaFirst-orderSystem 146 4.1.2 LinearSystems 147 4.2 MatrixAlgebra 150 4.3 EigenvaluesandEigenvectors 158 4.4 AnalyticSolutionsoftheLinearSystem𝐱⃗′ =𝐀𝐱⃗ 165 4.4.1 Application1: MixingProblemwithTwoCompartments 169 4.4.2 Application2: DoubleSpring-massSystem 171 4.5 LargeLinearSystems;theMatrixExponential 176 4.5.1 DefinitionandPropertiesoftheMatrixExponential 176 4.5.2 UsingtheMatrixExponentialtoSolveaNonhomogeneousSystem 178 4.5.3 Application: MixingProblemwithThreeCompartments 180 5 GeometryofAutonomousSystems 183 5.1 ThePhasePlaneforAutonomousSystems 184 5.2 GeometricBehaviorofLinearAutonomousSystems 187 5.2.1 LinearSystemswithReal(Distinct,Nonzero)Eigenvalues 188 5.2.2 LinearSystemswithComplexEigenvalues 190 5.2.3 TheTrace-determinantPlane 191 5.2.4 TheSpecialCases 193 5.3 GeometricBehaviorofNonlinearAutonomousSystems 198 5.3.1 FindingtheEquilibriumPoints 199 5.3.2 DeterminingtheTypeofanEquilibrium 200 5.3.3 ALimitCycle—theVanderPolEquation 204 5.4 BifurcationsforSystems 207 5.4.1 BifurcationinaSpring-massModel 208 5.4.2 BifurcationofaPredator-preyModel 208 5.4.3 BifurcationAnalysisAppliedtoaCompetingSpeciesModel 211 5.5 StudentProjects 214 5.5.1 TheWilson-CowanEquations 214 5.5.2 ANewPredator-preyEquation—PuttingItAllTogether 218 Contents vii 6 LaplaceTransforms 221 6.1 DefinitionandSomeSimpleLaplaceTransforms 221 6.1.1 FourSimpleLaplaceTransforms 223 6.1.2 LinearityoftheLaplaceTransform 224 6.1.3 TransformingtheDerivativeof𝑓(𝑡) 225 6.2 SolvingEquations,theInverseLaplaceTransform 227 6.2.1 PartialFractionExpansions 228 6.3 ExtendingtheTable 232 6.3.1 InvertingaTermwithanIrreducibleQuadraticDenominator 233 6.3.2 SolvingLinearSystemswithLaplaceTransforms 236 6.4 TheUnitStepFunction 239 6.5 ConvolutionandtheImpulseFunction 251 6.5.1 TheConvolutionIntegral 251 6.5.2 TheImpulseFunction 253 6.5.3 ImpulseResponseofaLinear,Time-invariantSystem 256 7 IntroductiontoPartialDifferentialEquations 261 7.1 SolvingPartialDifferentialEquations 261 7.1.1 AnOverviewoftheMethodofSeparationofVariables 263 7.2 OrthogonalFunctionsandTrigonometricFourierSeries 266 7.2.1 OrthogonalFamiliesofFunctions 266 7.2.2 PropertiesofFourierSeries,CosineandSineSeries 269 7.3 Boundary-ValueProblems: Sturm-LiouvilleEquations 274 8 SolvingSecond-orderPartialDifferentialEquations 285 8.1 ClassificationofLinearSecond-orderPartialDifferentialEquations 285 8.2 The1-dimensionalHeatEquation 289 8.2.1 SolutionoftheHeatEquationbySeparationofVariables 291 8.2.2 OtherBoundaryConditionsfortheHeatEquation 294 8.3 The1-dimensionalWaveEquation 299 8.3.1 SolutionoftheWaveEquationbySeparationofVariables 300 8.3.2 D’Alembert’sSolutionoftheWaveEquationonanInfiniteInterval 305 8.4 NumericalSolutionofParabolicandHyperbolicEquations 309 8.5 Laplace’sEquation 318 8.6 StudentProject: HarvestedDiffusiveLogisticEquation 324 Appendix 329 A AnswerstoOdd-numberedExercises 331 B DerivativeandIntegralFormulas 385 C CofactorMethodforDeterminants 387 D Cramer’sRuleforSolvingSystemsofLinearEquations 389 E TheWronskian 391 F TableofLaplaceTransforms 393 G ReviewofPartialDerivatives 395 Index 397 Preface Thisbookismeantforanyonewhohassuccessfullycompletedacourseincalculusand whonowwantsasolidintroductiontodifferentialequations. Thematerialcontained in the book is the standard material found in a two-semester undergraduate course indifferentialequations,normallytakenbyengineeringstudentsintheirsophomore year. Therearetwobasicdifferencesbetweenthistextandtheothers: first, thereis amuchgreateremphasisonphaseplaneanalysisappliedparticularlytothestudyof bifurcations, and second, a concerted effort has been put forth to make the book as readableaspossible(thinkstudent-centered). Thismeansthatinadditiontobeingan up-to-datetextforthestandardtwo-semestercourseinDEs,itisanobviouschoicefor acoursewhichisbeing”flipped”;itisalsoaveryappropriatechoiceforastudentwho wantstoeitherlearnorreviewdifferentialequationsonhisorherown. IntheprefacetothefirsteditionIemphasizedthatIwouldliketoseeallscience students, not only the prospective engineers, take a course in differential equations earlyintheircareer. Thisappliesaswelltoallofthenewmaterialinthesecondedi- tion. Thetwocompletelynewchaptersonpartialdifferentialequationscontainallof thestandardmaterialonsecond-orderlinearPDEs,includingasectiononFourierse- riesandasectiononSturm-Liouvilleboundary-valueproblems;thereisalsoenough material on numerical solutions to make it possible for students to write their own simpleprogramstosolvethetypeofnonlinearPDEsthatappear,forexample,inpop- ulationbiologyproblems. Acknowledgments. I want to thank all of the people, both at the MAA and the AMS,whohavedonesuchagreatjobinputtingthisbooktogether. Specialthanksare duetomyAMSeditor,BeckyRivard,whoseeffortstomakesurethateverythingwas donerightaregreatlyappreciated. The person most responsible for both the first and second editions of this book beinginprintisStephenKennedy,anditiswithdeepgratitudethatIacknowledgehis helpandencouragement. AtthispointIwouldliketoadmitthatalargeamountofwhatIknowaboutmod- ernengineeringandbiologyistheresultoftalkingwithmytwosons,Derek(acom- puterengineer)andErik(apopulationbiologist). Withmuchappreciation,therefore, thisbookisdedicatedtothem. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.