ebook img

Differential Equations. An Introduction to modern Methods and Applications PDF

683 Pages·2015·16.578 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Equations. An Introduction to modern Methods and Applications

DIFFERENTIAL EQUATIONS An Introduction to Modern Methods and Applications THIRD EDITION James R. Brannan ClemsonUniversity William E. Boyce RensselaerPolytechnicInstitute withcontributionsby Mark A. McKibben WestChesterUniversity Copyright c 2015,2011,2007JohnWiley&Sons,Inc.Allrightsreserved. ⃝ ISBN978-1-118-53177-8 ISBN978-1-118-98122-1(BRV) PrintedintheUnitedStatesofAmerica P R E F A C E This is a textbook for a first course in differential equations. The book is intended for science and engineering majors who have completed the calculus sequence, but not nec- essarily a first course in linear algebra. It emphasizes a systems approach to the subject and integrates the use of modern computing technology in the context of contemporary applicationsfromengineeringandscience. Our goal in writing this text is to provide these students with both an introduction to, andasurveyof,modernmethods,applications,andtheoryofdifferentialequationsthatis likelytoservethemwellintheirchosenfieldofstudy.Thesubjectmatterispresentedina mannerconsistentwiththewaypractitionersusedifferentialequationsintheirwork;tech- nologyisusedfreely,withmoreemphasisonmethods,modeling,graphicalrepresentation, qualitativeconcepts,andgeometricintuitionthanontheory. Notable Changes in the Third Edition This edition is a substantial revision of the second edition. The most significant changes are: ▶ EnhancedPageLayout Wehaveplacedimportantresults,theorems,definitions,and tables in highlighted boxes and have put subheadings just before the most important topicsineachsection.Thisshouldenhancereadabilityforbothstudentsandinstructors andhelpstudentstoreviewmaterialforexams. ▶ IncreasedEmphasisonQualitativeMethods Qualitativemethodsareintroducedearly. Throughoutthetext,newexamplesandproblemshavebeenaddedthatrequirethestu- denttousequalitativemethodstoanalyzesolutionbehavioranddependenceofsolutions onparameters. ▶ NewChapteronNumericalMethods Discussions on numerical methods, dispersed overthreechaptersinthesecondedition,havebeenrevisedandreassembledasaunit inChapter8.However,thefirstthreesectionsofChapter8canbestudiedbystudents aftertheyhavestudiedChapter1andthefirsttwosectionsofChapter2. ▶ Chapter1:Introduction This chapter has been reduced to three sections. In Section 1.1wefollowuponintroductorymodelsandconceptswithadiscussionoftheartand craftofmathematicalmodeling.Section1.2hasbeenreplacedbyanearlyintroduction toqualitativemethods,inparticular,phaselinesanddirectionfields.Linearizationand stabilitypropertiesofequilibriumsolutionsarealsodiscussed.InSection1.3wecover definitions, classification, and terminology to help give the student an organizational overviewofthesubjectofdifferentialequations. ▶ Chapter2:FirstOrderDifferentialEquations Newmathematicalmodelingproblems havebeenaddedtoSection2.3,andanewSection2.7onsubsitutionmethodshasbeen added.SectionsonnumericalmethodshavebeenmovedtoChapter8. ▶ Chapter3:SystemsofTwoFirstOrderEquations ThediscussionofWronskiansand fundamental sets of solutions has been supplemented with the definition of, and rela- tionshipto,linearlyindependentsolutionsoftwo-dimensionallinearsystems. ▶ Chapter4:SecondOrderLinearEquations Section4.6onforcedvibrations,frequency response,andresonance has been rewrittentoimprove itsreadabilityforstudents and instructors. vi Preface ▶ Chapter 10: Orthogonal Functions, Fourier Series and Boundary-Value Problems ThischaptergivesaunifiedtreatmentofclassicalandgeneralizedFourierseriesinthe frameworkoforthogonalfamiliesin thespacePC[a,b]. ▶ Chapter11:ElementaryPartialDifferentialEquations Material and projects on the heat equation,waveequation,andLaplace’sequationthatappearedinChapters9and 10ofthesecondedition,havebeenmovedtoChapter11inthethirdedition. ▶ MiscellaneousChangesandAdditions Changeshavebeenmadeincurrentproblems, and new problems have been added to many of the section problem sets. For ease in assigninghomework,boldfaceheadingshavebeenaddedtopartitiontheproblemsinto groupscorrespondingtomajortopicsdiscussedinthesection. Major Features ▶ FlexibleOrganization. Chaptersarearranged,andsectionsandprojectsarestructured, to facilitate choosing from a variety of possible course configurations depending on desiredcoursegoals,topics,anddepthofcoverage. ▶ NumerousandVariedProblems. Throughoutthetext,sectionexercisesofvaryinglev- elsofdifficultygivestudentshands-onexperienceinmodeling,analysis,andcomputer experimentation. ▶ EmphasisonSystems. Systemsoffirstorderequations,acentralandunifyingtheme ofthetext,areintroducedearly,inChapter3,andareusedfrequentlythereafter. ▶ LinearAlgebraandMatrixMethods. Two-dimensionallinearalgebrasufficientforthe study of two first order equations, taken up in Chapter 3, is presented in Section 3.1. Linearalgebraandmatrixmethodsrequiredforthestudyoflinearsystemsofdimension n(Chapter6)aretreatedinAppendixA. ▶ Optional Computing Exercises. In most cases, problems requesting computer- generatedsolutionsandgraphicsareoptional. ▶ VisualElements. Thetextcontainsalargenumberofillustrationsandgraphs.Inaddi- tion,manyoftheproblemsaskthestudenttocomputeandplotsolutionsofdifferential equations. ▶ ContemporaryProjectApplications. Optional projects at the end of all but one of Chapters2through11integratesubjectmatterinthecontextofexciting,oftencontem- porary,applicationsinscienceandengineering. ▶ LaplaceTransforms. AdetailedchapteronLaplacetransformsdiscussessystems,dis- continuousandimpulsiveinputfunctions,transferfunctions,feedbackcontrolsystems, poles,andstability. ▶ ControlTheory. Ideasandmethodsfromtheimportantapplicationareaofcontrolthe- oryareintroducedinsomeexamples,someprojects,andinthelastsectiononLaplace transforms.Allthismaterialisoptional. ▶ RecurringThemesandApplications. Important themes, methods, and applications, suchasdynamicalsystemformulation,phaseportraits,linearization,stabilityofequilib- riumsolutions,vibratingsystems,andfrequencyresponse,arerevisitedandreexamined inavarietyofmathematicalmodelsunderdifferentmathematicalsettings. ▶ ChapterSummaries. A summary at the end of each chapter provides students and instructorswithabird’s-eyeviewofthemostimportantideasinthechapter. ▶ AnswerstoProblems. Answers to selected odd-numbered problems are provided at theendofthebook;manyofthemareaccompaniedbyafigure. Problemsthatrequiretheuseofacomputeraremarkedwith .Whilewefeelthatstudents willbenefitfromusingthecomputeronthoseproblemswherenumericalapproximations Preface vii or computer-generated graphics are requested, in most problems it is clear that use of a computer,orevenagraphingcalculator,isoptional.Furthermoretherearealargenumber ofproblemsthatdonotrequiretheuseofacomputer.Thusthebookcaneasilybeusedin acoursewithoutusinganytechnology. Relation of This Text to Boyce and DiPrima BrannanandBoyceisanoffshootofthewell-knowntextbookbyBoyceandDiPrima.Read- ersfamiliarwithBoyceandDiPrimawilldoubtlessrecognizeinthepresentbooksomeof thehallmarkfeaturesthatdistinguishthattextbook. Tohelpavoidconfusionamongpotentialusersofeithertext,theprimarydifferencesare describedbelow: ▶ Brannan and Boyce is more sharply focused on the needs of students of engineering and science, whereas Boyce and DiPrima targets a somewhat more general audience, includingengineersandscientists. ▶ BrannanandBoyceisintendedtobemoreconsistentwiththewaycontemporaryscien- tistsandengineersactuallyusedifferentialequationsintheworkplace. ▶ BrannanandBoyceemphasizessystemsoffirstorderequations,introducingthemear- lier, and also examining them in more detail than Boyce and DiPrima. Brannan and Boycehasanextensiveappendixonmatrixalgebratosupportthetreatmentofsystems inndimensions. ▶ Brannan and Boyce integrates the use of computers more thoroughly than Boyce and DiPrima, and assumes that most students will use computers to generate approximate solutionsandgraphsthroughoutthebook. ▶ Brannan and Boyce emphasizes contemporary applications to a greater extent than BoyceandDiPrima,primarilythroughend-of-chapterprojects. ▶ BrannanandBoycemakessomewhatmoreuseofgraphs,withmoreemphasisonphase planedisplays,andusesengineeringlanguage(e.g.,statevariables,transferfunctions, gainfunctions,andpoles)toagreaterextentthanBoyceandDiPrima. Options for Course Structure Chapterdependenciesareshowninthefollowingblockdiagram: Chapter 6 Chapter 5 Appendix A Systems of The Matrix First Order Laplace Algebra Linear Transform Equations Chapter 3 Chapter 4 Chapter 9 Chapter 2 Systems of Second Series Chapter 1 First Order Two Order Solutions of Introduction Differential First Order Linear Second Order Equations Equations Equations Equations Chapter 7 Chapter 10 Chapter 11 Chapter 8 Nonlinear Orthogonal Elementary Numerical Differential Functions, PDEs Methods Equations Fourier Series, and Stability and BVPs viii Preface Thebookhasmuchbuilt-inflexibilityandallowsinstructorstochoosefrommanyop- tions. Depending on the course goals of the instructor and background of the students, selectedsectionsmaybecoveredlightlyorevenomitted. ▶ Chapters5,6,and7areindependentofeachother,andChapters6and7arealsoinde- pendentofChapter4.Itispossibletospendmuchclasstimeononeofthesechapters, orclasstimecanbespreadovertwoormoreofthem. ▶ Theamountoftimedevotedtoprojectsisentirelyuptotheinstructor. ▶ For an honors class, a class consisting of students who have already had a course in linearalgebra,oracourseinwhichlinearalgebraistobeemphasized,Chapter6may betakenupimmediatelyfollowingChapter2.Inthiscase,materialfromAppendixA, aswellassections,examples,andproblemsfromChapters3and4,maybeselectedas neededordesired.ThisoffersthepossibilityofspendingmoreclasstimeonChapters5, 7,and/orselectedprojects. Acknowledgments Itisapleasuretoofferourgratefulappreciationtothemanypeoplewhohavegenerously assistedinthepreparationofthisbook. Totheindividualslistedbelowwhoreviewedpartsorallofthethirdeditionmanuscript atvariousstagesofitsdevelopment: Miklo´sBo´na,UniversityofFlorida MarkW.Brittenham,UniversityofNebraska YanzhaoCao,AuburnUniversity DougCenzer,UniversityofFlorida LeonardChastkofsky,UniversityofGeorgia JonM.Collis,ColoradoSchoolofMines DomenicoD’Alessandro,IowaStateUniversity ShaozhongDeng,UniversityofNorthCarolinaatCharlotte PatriciaJ.Diute,RochesterInstituteofTechnology BehzadDjafariRouhani,UniversityofTexasatElPaso AlinaN.Duca,NorthCarolinaStateUniversity MarekZ.Elżanowski,PortlandStateUniversity VincentGraziano,CaseWesternReserveUniversity MansoorA.Haider,NorthCarolinaStateUniversity M.D.Hendon,UniversityofGeorgia MohamedAKhamsi,UniversityofTexasatElPaso MarcusA.Khuri,StonyBrookUniversity RichardC.LeBorne,TennesseeTechnologicalUniversity GlennLedder,UniversityofNebraska-Lincoln KristopherLee,IowaStateUniversity JensLorenz,UniversityofNewMexico AldoJ.Manfroi,UniversityofIllinois MarcusMcGuff,AustinCommunityCollege Preface ix WilliamF.Moss,ClemsonUniversity MikeNicholas,ColoradoSchoolofMines MohamedAitNouh,UniversityofTexasatElPaso FrancisJ.Poulin,UniversityofWaterloo MaryJarrattSmith,BoiseStateUniversity StephenJ.Summers,UniversityofFlorida YiSun,UniversityofSouthCarolinaKyleThompson,NorthCarolinaStateUniversity StellaThistlethwaite,UniversityofTennessee,Knoxville VincentVatter,UniversityofFlorida PuPatrickWang,UniversityofAlabama DongmingWei,NazarbayevUniversity LarissaWilliamson,UniversityofFlorida HafizahYahya,UniversityofAlberta KonstantinZuev,UniversityofSouthernCalifornia. To Mark McKibben, West Chester University; Doug Meade, University of South Carolina; Bill Siegmann, Rensselaer Polytechnic Institute, for their contributions to the revision. ToJenniferBlue,SUNYEmpireStateCollege,foraccuracycheckingpageproofs. TotheeditorialandproductionstaffofJohnWileyandSons,Inc.,identifiedonpageiv, whowereresponsibleforturningourmanuscriptintoafinishedbook.Intheprocess,they maintainedthehigheststandardsofprofessionalism. Wealsowishtoacknowledgethelesstangiblecontributionsofourfriendandcolleague, thelateRichardDiPrima.Partsofthisbookdrawextensivelyonthebookondifferential equationsbyBoyceandDiPrima.SinceDickDiPrimawasanequalpartnerincreatingthe earlyeditionsofthatbook,hisinfluencelivesonmore thanthirtyyearsafterhisuntimely death. Finally,andmostimportantofall,wethankourwivesCherylandElsafortheirunder- standing,encouragement,andpatiencethroughoutthewritingandproductionofthisbook. Withouttheirsupportitwouldhavebeenmuchmoredifficult,ifnotimpossible,forusto completethisproject. JamesR.Brannan Clemson,SouthCarolina WilliamE.Boyce Latham,NewYork x Preface Supplemental Resources for Instructors and Students AnInstructor’sSolutionsManual,includessolutionsforallproblemsinthetext. A Student Solutions Manual, ISBN 9781118981252, includes solutions for selected problemsinthetext. ACompanionwebsite,www.wiley.com/college/brannan,providesawealthofresources forstudentsandinstructors,including: ▶ PowerPointslidesofimportantideasandgraphicsforstudyandnotetaking. ▶ Online Only Projects—these projects are like the end-of-chapter projects in the text. They present contemporary problems that are not usually included among traditional differentialequationstopics.Manyoftheprojectsinvolveapplicationsderivedfroma variety of disciplines and integrate or extend theories and methods presented in core material. ▶ Mathematica,Maple,andMATLABdatafilesareprovidedforselectedend-of-sectionor end-of-chapterproblemsinthetextallowingforfurtherexplorationofimportantideas inthecourseutilizingthesecomputeralgebraandnumericalanalysispackages.Students willbenefitfromusingthecomputeronproblemswherenumericalapproximationsor computergeneratedgraphicsarerequested. ▶ ReviewofIntegration—Anonlinereviewofintegrationtechniquesisprovidedforstu- dentswhoneedarefresher. WileyPLUS: Expect More from Your Classroom Technology ThistextissupportedbyWileyPLUS—apowerfulandhighlyintegratedsuiteofteaching andlearningresourcesdesignedtobridgethegapbetweenwhathappensintheclassroom and what happens at home. WileyPLUS includes a complete online version of the text, algorithmicallygeneratedexercises,allofthetextsupplements,pluscourseandhomework managementtools,inoneeasy-to-usewebsite. Organizedaroundtheeverydayactivitiesyouperforminclass,WileyPLUShelpsyou: ▶ PrepareandPresent: WileyPLUS letsyoucreateclasspresentationsquicklyandeasily usingawealthofWiley-providedresources,includinganonlineversionofthetextbook, PowerPointslides,andmore.Youcanadaptthiscontenttomeettheneedsofyourcourse. ▶ CreateAssignments: WileyPLUSenablesyoutoautomatetheprocessofassigningand gradinghomeworkorquizzes. ▶ TrackStudentProgress: Aninstructor’sgradebookallowsyoutoanalyzeindividual andoverallclassresultstodeterminestudents’progressandlevelofunderstanding. ▶ PromoteStrongProblem-SolvingSkills: WileyPLUScanlinkhomeworkproblemsto the relevant section of the online text, providing students with context-sensitive help. WileyPLUS also features mastery problems that promote conceptual understanding of keytopicsandvideowalkthroughsofexampleproblems. ▶ ProvideNumerousPracticeOpportunities: Algorithmicallygeneratedproblemspro- videunlimitedself-practiceopportunitiesforstudents,aswellasproblemsforhomework andtesting. ▶ SupportVariedLearningStyles: WileyPLUSincludestheentiretextindigitalformat, enhanced with varied problem types to support the array of different student learning stylesintoday’sclassrooms. ▶ Administer Your Course: You can easily integrate WileyPLUS with another course management system, gradebooks, or other resources you are using in your class, en- ablingyoutobuildyourcourse,yourway. C O N T E N T S CHAPTER 1 Introduction 1 4.4MechanicalandElectricalVibrations 241 4.5NonhomogeneousEquations;Methodof 1.1MathematicalModelsandSolutions 2 UndeterminedCoefficients 252 1.2QualitativeMethods:PhaseLinesandDirection 4.6ForcedVibrations,FrequencyResponse,and Fields 12 Resonance 261 1.3Definitions,Classification,andTerminology 28 4.7VariationofParameters 274 Projects CHAPTER 2 FirstOrderDifferential 4.P.1AVibrationInsulationProblem 285 Equations 37 4.P.2LinearizationofaNonlinearMechanical 2.1SeparableEquations 38 System 286 2.2LinearEquations:MethodofIntegratingFactors 45 4.P.3ASpring-MassEventProblem 288 2.3ModelingwithFirstOrderEquations 55 4.P.4Euler–LagrangeEquations 289 2.4DifferencesBetweenLinearandNonlinear Equations 70 2.5AutonomousEquationsandPopulationDynamics 80 CHAPTER 5 TheLaplaceTransform 294 2.6ExactEquationsandIntegratingFactors 93 5.1DefinitionoftheLaplaceTransform 295 2.7SubstitutionMethods 101 5.2PropertiesoftheLaplaceTransform 304 Projects 5.3TheInverseLaplaceTransform 311 2.P.1HarvestingaRenewableResource 110 5.4SolvingDifferentialEquationswithLaplace 2.P.2AMathematicalModelofaGroundwater Transforms 320 ContaminantSource 111 5.5DiscontinuousFunctionsandPeriodicFunctions 328 2.P.3MonteCarloOptionPricing:PricingFinancial 5.6DifferentialEquationswithDiscontinuousForcing OptionsbyFlippingaCoin 113 Functions 337 5.7ImpulseFunctions 344 CHAPTER 3 SystemsofTwoFirstOrder 5.8ConvolutionIntegralsandTheirApplications 351 5.9LinearSystemsandFeedbackControl 361 Equations 116 Projects 3.1SystemsofTwoLinearAlgebraicEquations 117 5.P.1AnElectricCircuitProblem 371 3.2SystemsofTwoFirstOrderLinearDifferential 5.P.2TheWattGovernor,FeedbackControl,and Equations 129 Stability 372 3.3HomogeneousLinearSystemswithConstant Coefficients 145 3.4ComplexEigenvalues 167 CHAPTER 6 SystemsofFirstOrder 3.5RepeatedEigenvalues 178 LinearEquations 377 3.6ABriefIntroductiontoNonlinearSystems 189 6.1DefinitionsandExamples 378 Projects 6.2BasicTheoryofFirstOrderLinearSystems 389 3.P.1EstimatingRateConstantsforanOpen 6.3HomogeneousLinearSystemswithConstant Two-CompartmentModel 199 Coefficients 399 3.P.2ABlood–BrainPharmacokineticModel 201 6.4NondefectiveMatriceswithComplexEigenvalues 410 6.5FundamentalMatricesandtheExponentialofa CHAPTER 4 SecondOrderLinear Matrix 420 Equations 203 6.6NonhomogeneousLinearSystems 431 4.1DefinitionsandExamples 203 6.7DefectiveMatrices 438 4.2TheoryofSecondOrderLinearHomogeneous Projects Equations 216 6.P.1EarthquakesandTallBuildings 446 4.3LinearHomogeneousEquationswithConstant 6.P.2ControllingaSpring-MassSystemto Coefficients 228 Equilibrium 449 xii Contents CHAPTER 7 NonlinearDifferential 10.4GeneralSturm–LiouvilleBoundaryValueProblems EquationsandStability 456 10.5GeneralizedFourierSeriesandEigenfunction Expansions 7.1AutonomousSystemsandStability 456 10.6SingularBoundaryValueProblems 7.2AlmostLinearSystems 466 10.7ConvergenceIssues 7.3CompetingSpecies 476 7.4Predator–PreyEquations 488 7.5PeriodicSolutionsandLimitCycles 496 CHAPTER 11 ElementaryPartial 7.6ChaosandStrangeAttractors:TheLorenz DifferentialEquations(onlineonly) Equations 506 11.1Terminology Projects 11.2HeatConductioninaRod—HomogeneousCase 7.P.1ModelingofEpidemics 514 11.3HeatConductioninaRod—Nonhomogeneous 7.P.2HarvestinginaCompetitiveEnvironment 516 Case 7.P.3TheR¨osslerSystem 518 11.4WaveEquation—VibrationsofanElasticString 11.5WaveEquation—VibrationsofaCircularMembrane CHAPTER 8 NumericalMethods 519 11.6LaplaceEquation 8.1NumericalApproximations:Euler’sMethod 519 Projects 8.2AccuracyofNumericalMethods 530 11.P.1EstimatingtheDiffusionCoefficientintheHeat 8.3ImprovedEulerandRunge–KuttaMethods 537 Equation 8.4NumericalMethodsforSystemsofFirstOrder 11.P.2TheTransmissionLineProblem Equations 546 11.P.3SolvingPoisson’sEquationbyFiniteDifferences Projects 11.P.4DynamicBehaviorofaHangingCable 8.P.1DesigningaDripDispenserforaHydrology 11.P.5AdvectionDispersion:AModelforSoluteTransport Experiment 550 inSaturatedPorousMedia 8.P.2MonteCarloOptionPricing:PricingFinancial 11.P.6Fisher’sEquationforPopulationGrowthand OptionsbyFlippingaCoin 551 Dispersion Appendices (availableoncompanionwebsite) CHAPTER 9 SeriesSolutionsofSecond 11.ADerivationoftheHeatEquation OrderEquations(onlineonly) 11.BDerivationoftheWaveEquation 9.1ReviewofPowerSeries 9.2SeriesSolutionsNearanOrdinaryPoint,PartI APPENDIX A MatricesandLinear 9.3SeriesSolutionsNearanOrdinaryPoint,PartII Algebra 555 9.4RegularSingularPoints 9.5SeriesSolutionsNearaRegularSingularPoint,PartI A.1Matrices 555 9.6SeriesSolutionsNearaRegularSingularPoint,PartII A.2SystemsofLinearAlgebraicEquations,Linear Independence,andRank 564 9.7Bessel’sEquation A.3DeterminantsandInverses 581 Projects A.4TheEigenvalueProblem 590 9.P.1DiffractionThroughaCircularAperature 9.P.2HermitePolynomialsandtheQuantumMechanical HarmonicOscillator APPENDIX B ComplexVariables(online 9.P.3PerturbationMethods only) CHAPTER 10 OrthogonalFunctions, FourierSeries,andBoundaryValue ReviewofIntegration(onlineonly) Problems(onlineonly) Answers 601 10.1OrthogonalFamiliesintheSpacePC[a,b] References 664 10.2FourierSeries Index 666 10.3ElementaryTwo-PointBoundaryValueProblems

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.