Differential Equations Textbooks in Mathematics Series editors: Al Boggess and Ken Rosen CRYPTOGRAPHY: THEORY AND PRACTICE, FOURTH EDITION Douglas R. Stinson and Maura B. Paterson GRAPH THEORY AND ITS APPLICATIONS, THIRD EDITION Jonathan L. Gross, Jay Yellen and Mark Anderson COMPLEX VARIABLES: A PHYSICAL APPROACH WITH APPLICATIONS, SECOND EDITION Steven G. Krantz GAME THEORY: A MODELING APPROACH Richard Alan Gillman and David Housman FORMAL METHODS IN COMPUTER SCIENCE Jiacun Wang and William Tepfenhart AN ELEMENTARY TRANSITION TO ABSTRACT MATHEMATICS Gove Effinger and Gary L. Mullen ORDINARY DIFFERENTIAL EQUATIONS: AN INTRODUCTION TO THE FUNDAMENTALS, SECOND EDITION Kenneth B. Howell SPHERICAL GEOMETRY AND ITS APPLICATIONS Marshall A. Whittlesey COMPUTATIONAL PARTIAL DIFFERENTIAL PARTIAL EQUATIONS USING MATLAB®, SECOND EDITION Jichun Li and Yi-Tung Chen AN INTRODUCTION TO MATHEMATICAL PROOFS Nicholas A. Loehr DIFFERENTIAL GEOMETRY OF MANIFOLDS, SECOND EDITION Stephen T. Lovett MATHEMATICAL MODELING WITH EXCEL Brian Albright and William P. Fox THE SHAPE OF SPACE, THIRD EDITION Jeffrey R. Weeks CHROMATIC GRAPH THEORY, SECOND EDITION Gary Chartrand and Ping Zhang PARTIAL DIFFERENTIAL EQUATIONS: ANALYTICAL METHODS AND APPLICATIONS Victor Henner, Tatyana Belozerova, and Alexander Nepomnyashchy ADVANCED PROBLEM SOLVING USING MAPLE: APPLIED MATHEMATICS, OPERATION RESEARCH, BUSINESS ANALYTICS, AND DECISION ANALYSIS William P. Fox and William C. Bauldry DIFFERENTIAL EQUATIONS: A MODERN APPROACH WITH WAVELETS Steven G. Krantz https://www.crcpress.com/Textbooks-in-Mathematics/book-series/CANDHTEXBOOMTH Differential Equations A Modern Approach with Wavelets Steven G. Krantz CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2020 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-0-367-44409-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To Yves Meyer, with respect and admiration. Contents Preface for the Instructor xi Preface for the Student xiii 1 What Is a Differential Equation? 1 1.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . 1 1.2 A Taste of Ordinary Differential Equations . . . . . . . . . . 4 1.3 The Nature of Solutions . . . . . . . . . . . . . . . . . . . . . 6 1.4 Separable Equations . . . . . . . . . . . . . . . . . . . . . . . 13 1.5 First-Order, Linear Equations . . . . . . . . . . . . . . . . . 16 1.6 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.7 Orthogonal Trajectories and Families of Curves . . . . . . . 26 1.8 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . 31 1.9 Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . 35 1.10 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . 39 1.10.1 Dependent Variable Missing . . . . . . . . . . . . . . . 40 1.10.2 Independent Variable Missing . . . . . . . . . . . . . . 42 1.11 Hanging Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.11.1 The Hanging Chain . . . . . . . . . . . . . . . . . . . 45 1.11.2 Pursuit Curves . . . . . . . . . . . . . . . . . . . . . . 50 1.12 Electrical Circuits . . . . . . . . . . . . . . . . . . . . . . . . 54 1.13 The Design of a Dialysis Machine . . . . . . . . . . . . . . . 58 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 62 2 Second-Order Linear Equations 67 2.1 Second-Order Linear Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.2 The Method of Undetermined Coefficients . . . . . . . . . . 73 2.3 The Method of Variation of Parameters . . . . . . . . . . . . 78 2.4 The Use of a Known Solution to Find Another . . . . . . . . 82 2.5 Vibrations and Oscillations . . . . . . . . . . . . . . . . . . . 86 2.5.1 Undamped Simple Harmonic Motion . . . . . . . . . . 86 2.5.2 Damped Vibrations . . . . . . . . . . . . . . . . . . . 88 2.5.3 Forced Vibrations . . . . . . . . . . . . . . . . . . . . 92 2.5.4 A Few Remarks about Electricity . . . . . . . . . . . . 94 2.6 Newton’s Law of Gravitation and Kepler’s Laws . . . . . . . 97 vii viii CONTENTS 2.6.1 Kepler’s Second Law . . . . . . . . . . . . . . . . . . . 101 2.6.2 Kepler’s First Law . . . . . . . . . . . . . . . . . . . . 103 2.6.3 Kepler’s Third Law. . . . . . . . . . . . . . . . . . . . 106 2.7 Higher-Order Coupled Harmonic Oscillators . . . . . . . . . 111 Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.8 Bessel Functions and the Vibrating Membrane . . . . . . . . 118 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 122 3 Power Series Solutions and Special Functions 125 3.1 Introduction and Review of Power Series . . . . . . . . . . . 125 3.1.1 Review of Power Series . . . . . . . . . . . . . . . . . 126 3.2 Series Solutions of First-Order Differential Equations . . . . 136 3.3 Second-Order Linear Equations: Ordinary Points . . . . . . . 141 3.4 Regular Singular Points . . . . . . . . . . . . . . . . . . . . . 149 3.5 More on Regular Singular Points . . . . . . . . . . . . . . . . 155 Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.6 Steady-State Temperature in a Ball . . . . . . . . . . . . . . 165 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 168 4 Sturm–Liouville Problems and Boundary Value Problems 171 4.1 What Is a Sturm–Liouville Problem? . . . . . . . . . . . . . 171 4.2 Analyzing a Sturm–Liouville Problem . . . . . . . . . . . . . 177 4.3 Applications of the Sturm–Liouville Theory . . . . . . . . . . 182 4.4 Singular Sturm–Liouville . . . . . . . . . . . . . . . . . . . . 188 4.5 Some Ideas from Quantum Mechanics . . . . . . . . . . . . . 195 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 198 5 Numerical Methods 201 5.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . 202 5.2 The Method of Euler . . . . . . . . . . . . . . . . . . . . . . 203 5.3 The Error Term . . . . . . . . . . . . . . . . . . . . . . . . . 207 5.4 An Improved Euler Method . . . . . . . . . . . . . . . . . . . 211 5.5 The Runge–Kutta Method . . . . . . . . . . . . . . . . . . . 215 5.6 A Constant Perturbation Method for Linear, Second-Order Equations . . . . . . . . . . . . . . . . . . . . 219 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 222 6 Fourier Series: Basic Concepts 227 6.1 Fourier Coefficients . . . . . . . . . . . . . . . . . . . . . . . 227 6.2 Some Remarks about Convergence . . . . . . . . . . . . . . . 237 6.3 Even and Odd Functions: Cosine and Sine Series . . . . . . . 242 6.4 Fourier Series on Arbitrary Intervals . . . . . . . . . . . . . . 248 6.5 Orthogonal Functions . . . . . . . . . . . . . . . . . . . . . . 252 Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 CONTENTS ix 6.6 Introduction to the Fourier Transform . . . . . . . . . . . . . 258 6.6.1 Convolution and Fourier Inversion . . . . . . . . . . . 266 6.6.2 The Inverse Fourier Transform . . . . . . . . . . . . . 266 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 268 7 Laplace Transforms 273 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 7.2 Applications to Differential Equations . . . . . . . . . . . . . 276 7.3 Derivatives and Integrals of Laplace Transforms . . . . . . . 281 7.4 Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 7.4.1 Abel’s Mechanics Problem . . . . . . . . . . . . . . . . 290 7.5 The Unit Step and Impulse Functions . . . . . . . . . . . . . 295 Historical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 7.6 Flow Initiated by an Impulsively Started Flat Plate . . . . . 304 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 307 8 Distributions 313 8.1 Schwartz Distributions . . . . . . . . . . . . . . . . . . . . . 313 8.1.1 The Topology of the Space . . . . . . . . . . . . . . 314 S 8.1.2 Algebraic Properties of Distributions . . . . . . . . . . 316 8.1.3 The Fourier Transform . . . . . . . . . . . . . . . . . . 317 8.1.4 Other Spaces of Distributions . . . . . . . . . . . . . . 317 8.1.5 More on the Topology of and . . . . . . . . . . . 320 ′ D D Problems for Review and Discovery . . . . . . . . . . . . . . . . . 321 9 Wavelets 323 9.1 Localization in Both Variables . . . . . . . . . . . . . . . . . 323 9.2 Building a Custom Fourier Analysis . . . . . . . . . . . . . . 326 9.3 The Haar Basis . . . . . . . . . . . . . . . . . . . . . . . . . 328 9.4 Some Illustrative Examples . . . . . . . . . . . . . . . . . . . 333 9.5 Construction of a Wavelet Basis . . . . . . . . . . . . . . . . 343 9.5.1 A Combinatorial Construction of the Daubechies Wavelets. . . . . . . . . . . . . . . . . . . . . . . . . . 346 9.5.2 The Daubechies Wavelets from the Point of View of Fourier Analysis . . . . . . . . . . . . . . . . . . . . 348 9.5.3 Wavelets as an Unconditional Basis . . . . . . . . . . 350 9.5.4 Wavelets and Almost Diagonalizability . . . . . . . . . 352 9.6 The Wavelet Transform . . . . . . . . . . . . . . . . . . . . . 355 9.7 More on the Wavelet Transform . . . . . . . . . . . . . . . . 369 9.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 374 9.8 Decomposition and Its Obverse . . . . . . . . . . . . . . . . . 375 9.9 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . 381 9.10 Cumulative Energy and Entropy . . . . . . . . . . . . . . . . 390 Problems for Review and Discovery . . . . . . . . . . . . . . . . . 394