ebook img

Differential Equations PDF

72 Pages·2012·0.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Equations

Chapter 8 Differential Equations 8.1 Introduction Inphysics,theknowledgeoftheforceinanequationofmotionusuallyleads to a differential equation, with time as the independent variable, that gov- erns dynamical changes in space. Almost all the elementary and numerous advanced parts of theoretical physics are formulated in terms of differential equations.Sometimestheseareordinarydifferentialequationsinonevariable (ODE).Moreoften,theequationsarepartialdifferentialequations(PDE)in combinationsofspaceandtimevariables.Infact,PDEsmotivatephysicists’ interest in ODEs. The term ordinary is applied when the only derivatives dy/dx,d2y/dx2,...areordinaryortotalderivatives.AnODEisfirstorderif itcontainsthefirstandnohigherderivativesoftheunknownfunction y(x), secondorderifitcontainsd2y/dx2andnohigherderivatives,etc. Recallfromcalculusthattheoperationoftakinganordinaryderivativeis alinearoperation(L)1 d(aϕ(x)+bψ(x)) dϕ dψ =a +b . dx dx dx Ingeneral, L(aϕ+bψ)=aL(ϕ)+bL(ψ), (8.1) where a and b are constants. An ODE is called linear if it is linear in the unknownfunctionanditsderivatives.Thus,linearODEsappearaslinear operatorequations Lψ = F, 1Weareespeciallyinterestedinlinearoperatorsbecauseinquantummechanicsphysicalquantities arerepresentedbylinearoperatorsoperatinginacomplex,infinitedimensionalHilbertspace. 410 8.2 First-OrderODEs 411 whereψistheunknownfunctionorgeneralsolution,thesourceFisaknown function of one variable (for ODEs) and independent of ψ, and L is a linear combination of derivatives acting on ψ. If F =(cid:4) 0, the ODE is called inho- mogeneous;if F ≡ 0, theODEiscalledhomogeneous.Thesolutionofthe homogeneousODEcanbemultipliedbyanarbitraryconstant.Ifψ isapar- p ticularsolutionoftheinhomogeneousODE,thenψ =ψ−ψ isasolution h p of the homogeneous ODE because L(ψ −ψ ) = F − F = 0. Thus, the gen- p eralsolutionisgivenbyψ =ψ +ψ .ForthehomogeneousODE,anylinear p h combinationofsolutionsisagainasolution,providedthedifferentialequation is linear in the unknown function ψ ; this is the superposition principle. h We usually have to solve the homogeneous ODE first before searching for particularsolutionsoftheinhomogeneousODE. Sincethedynamicsofmanyphysicalsystemsinvolvesecond-orderderiva- tives(e.g.,accelerationinclassicalmechanicsandthekineticenergyoperator, ∼∇2, in quantum mechanics), differential equations of second order occur mostfrequentlyinphysics.[Maxwell’sandDirac’sequationsarefirstorderbut involve two unknown functions. Eliminating one unknown yields a second- orderdifferentialequationfortheother(compareSection1.9).]Similarly,any higher order (linear) ODE can be reduced to a system of coupled first-order ODEs. Nonetheless, there are many physics problems that involve first-order ODEs. Examples are resistance–inductance electrical circuits, radioactive decays, and special second-order ODEs that can be reduced to first-order ODEs. These cases and separable ODEs will be discussed first. ODEs of secondorderaremorecommonandtreatedinsubsequentsections,involving the special class of linear ODEs with constant coefficients. The impor- tant power-series expansion method of solving ODEs is demonstrated using second-orderODEs. 8.2 First-OrderODEs Certainphysicalproblemsinvolvefirst-orderdifferentialequations.Moreover, sometimessecond-orderODEscanbereducedtofirst-orderODEs,whichthen havetobesolved.Thus,itseemsdesirabletostartwiththem.Weconsiderhere differentialequationsofthegeneralform dy P(x, y) = f(x, y)=− . (8.2) dx Q(x, y) Equation(8.2)isclearlyafirst-orderODE;itmayormaynotbelinear,although weshalltreatthelinearcaseexplicitlylater,startingwithEq.(8.12). SeparableVariables Frequently,Eq.(8.2)willhavethespecialform dy P(x) = f(x, y)=− . (8.3) dx Q(y) 412 Chapter8 DifferentialEquations Thenitmayberewrittenas P(x)dx+Q(y)dy=0. Integratingfrom(x , y )to(x, y)yields 0 0 (cid:2) (cid:2) x y P(X)dX+ Q(Y)dY =0. (8.4) x0 y0 Here we have used capitals to distinguish the integration variables from the upperlimitsoftheintegrals,apracticethatwewillcontinuewithoutfurther comment.Sincethelowerlimitsx andy contributeconstants,wemayignore 0 0 thelowerlimitsofintegrationandwriteaconstantofintegrationontheright- handsideinsteadofzero,whichcanbeusedtosatisfyaninitialcondition.Note thatthisseparationofvariablestechniquedoesnotrequirethatthedifferential equationbelinear. EXAMPLE8.2.1 Radioactive Decay The decay of a radioactive sample involves an event thatisrepeatedataconstantrateλ.Iftheobservationtimedtissmallenough sothattheemissionoftwoormoreparticlesisnegligible,thentheprobability thatoneparticleisemittedisλdt, withλdt (cid:8)1.Thedecaylawisgivenby dN(t) =−λN(t), (8.5) dt where N(t)is the number of radioactive atoms in the sample at time t. This ODEisseparable dN/N =−λdt (8.6) andcanbeintegratedtogive lnN =−λt+lnN , or N(t)= N e−λt, (8.7) 0 0 where we have written the integration constant in logarithmic form for con- venience; N isfixedbyaninitialcondition N(0)= N . (cid:2) 0 0 Inthenextexamplefromclassicalmechanics,theODEisseparablebutnot linearintheunknown,whichposesnoproblem. EXAMPLE8.2.2 Parachutist We want to find the velocity of the falling parachutist as a function of time and are particularly interested in the constant limiting ve- locity,v , thatcomesaboutbyairresistancetakentobequadratic,−bv2, and 0 opposingtheforceofthegravitationalattraction,mg,oftheearth.Wechoose acoordinatesysteminwhichthepositivedirectionisdownwardsothatthe gravitational force is positive. For simplicity we assume that the parachute opens immediately, that is, at time t = 0, where v(t = 0) = 0, our initial condition.Newton’slawappliedtothefallingparachutistgives mv˙ =mg−bv2, wheremincludesthemassoftheparachute. 8.2 First-OrderODEs 413 Theterminalvelocityv canbefoundfromtheequationofmotionast → 0 ∞,whenthereisnoacceleration,v˙ =0, sothat (cid:3) bv2 =mg, or v = mg/b. 0 0 Thevariablestandvseparate dv =dt, g− bv2 m which we integrate by decomposing the denominator into partial fractions. Therootsofthedenominatorareatv =±v .Hence, 0 (cid:4) (cid:5) (cid:4) (cid:5) b −1 m 1 1 g− v2 = − . m 2v b v+v v−v 0 0 0 Integratingbothtermsyields (cid:2) (cid:6) v dV 1 m v +v = ln 0 =t. g− bV2 2 gb v −v m 0 Solvingforthevelocityyields e2t/T −1 sinh t t v = v =v T =v tanh , e2t/T +1 0 0cosh t 0 T T (cid:7) where T = m is the time constant governing the asymptotic approach of gb thevelocitytothelimitingvelocityv . 0 Putting in numeric√al values, g = 9.8 m/sec2 and taking b = 700 kg/m, m=70kg,givesv0 = 9.8/10∼1m/sec,∼3.6km/(cid:7)hr,or∼2.2√3miles/hr,the walking speed of a pedestrian at landing, and T = m = 1/ 10·9.8 ∼ 0.1 bg sec. Thus, the constant speed v is reached within 1 sec. Finally, because it 0 is always important to check the solution, we verify that our solution satisfies cosht/T v sinh2t/T v v v2 b v˙ = 0 − 0 = 0 − =g− v2, cosht/T T cosh2t/T T T Tv m 0 that is, Newton’s equation of motion. The more realistic case, in which the parachutist is in free fall with an initial speed v = v(0) =(cid:4) 0 before the i parachuteopens,isaddressedinExercise8.2.16. (cid:2) ExactDifferentialEquations WerewriteEq.(8.2)as P(x, y)dx+Q(x, y)dy=0. (8.8) Thisequationissaidtobeexactifwecanmatchtheleft-handsideofittoa differentialdϕ, ∂ϕ ∂ϕ dϕ = dx+ dy. (8.9) ∂x ∂y 414 Chapter8 DifferentialEquations Since Eq. (8.8) has a zero on the right, we look for an unknown function ϕ(x, y)=constantanddϕ =0. Wehave[ifsuchafunctionϕ(x, y)exists] ∂ϕ ∂ϕ P(x, y)dx+Q(x, y)dy= dx+ dy (8.10a) ∂x ∂y and ∂ϕ ∂ϕ = P(x, y), = Q(x, y). (8.10b) ∂x ∂y Thenecessaryandsufficientconditionforourequationtobeexactisthatthe second, mixed partial derivatives of ϕ(x, y) (assumed continuous) are inde- pendentoftheorderofdifferentiation: ∂2ϕ ∂P(x, y) ∂Q(x, y) ∂2ϕ = = = . (8.11) ∂y∂x ∂y ∂x ∂x∂y NotetheresemblancetoEq.(1.124)ofSection1.12.IfEq.(8.8)corresponds toacurl(equaltozero),thenapotential,ϕ(x, y),mustexist. Ifϕ(x, y)existsthen,fromEqs.(8.8)and(8.10a),oursolutionis ϕ(x, y)=C. We may construct ϕ(x, y)from its partial derivatives, just as we construct a magneticvectorpotentialfromitscurl.SeeExercises8.2.7and8.2.8. It may well turn out that Eq. (8.8) is not exact and that Eq. (8.11) is not satisfied. However, there always exists at least one and perhaps many more integratingfactors,α(x, y),suchthat α(x, y)P(x, y)dx+α(x, y)Q(x, y)dy=0 is exact. Unfortunately, an integrating factor is not always obvious or easy to find. Unlike the case of the linear first-order differential equation to be considerednext,thereisnosystematicwaytodevelopanintegratingfactor forEq.(8.8). Adifferentialequationinwhichthevariableshavebeenseparatedisauto- maticallyexact.Anexactdifferentialequationisnotnecessarilyseparable. LinearFirst-OrderODEs If f(x, y)inEq.(8.2)hastheform−p(x)y+q(x),thenEq.(8.2)becomes dy + p(x)y=q(x). (8.12) dx Equation(8.12)isthemostgenerallinearfirst-orderODE.Ifq(x)=0,Eq. (8.12)ishomogeneous(in y).Anonzeroq(x)mayberegardedasasource oradriving termfortheinhomogeneous ODE.InEq.(8.12),eachtermis 8.2 First-OrderODEs 415 linearinyordy/dx.Therearenohigherpowers,suchasy2,andnoproducts, suchasy(dy/dx).Notethatthelinearityreferstotheyanddy/dx; p(x)and q(x)neednotbelinearin x.Equation(8.12),themostimportantforphysics ofthesefirst-orderODEs,maybesolvedexactly. Letuslookforanintegratingfactorα(x)sothat dy α(x) +α(x)p(x)y=α(x)q(x) (8.13) dx mayberewrittenas d [α(x)y]=α(x)q(x). (8.14) dx Thepurposeofthisistomaketheleft-handsideofEq.(8.12)aderivativeso thatitcanbeintegratedbyinspection.Italso,incidentally,makesEq.(8.12) exact.ExpandingEq.(8.14),weobtain dy dα α(x) + y=α(x)q(x). dx dx ComparisonwithEq.(8.13)showsthatwemustrequire dα =α(x)p(x). (8.15) dx Hereisadifferentialequationforα(x),withthevariablesαandxseparable. Weseparatevariables,integrate,andobtain (cid:8)(cid:2) (cid:9) x α(x)=exp p(X)dX (8.16) asourintegratingfactor.Thelowerlimitisnotwrittenbecauseitonlymulti- pliesαandtheODEbyaconstant,whichisirrelevant. Withα(x)knownweproceedtointegrateEq.(8.14).This,ofcourse,was thepointofintroducingαinthefirstplace.Wehave (cid:2) (cid:2) x d x [α(X)y(X)]dX = α(X)q(X)dX. dX Nowintegratingbyinspection,wehave (cid:2) x α(x)y(x)= α(X)q(X)dX+C. Theconstantsfromaconstantlowerlimitofintegrationareabsorbedinthe constantC.Dividingbyα(x),weobtain (cid:10) (cid:11) (cid:2) x y(x)=[α(x)]−1 α(X)q(X)dX+C . Finally,substitutinginEq.(8.16)forαyields (cid:8) (cid:2) (cid:9)(cid:12)(cid:2) (cid:8)(cid:2) (cid:9) (cid:13) x x Z y(x)=exp − p(X)dX exp p(Y)dY q(Z)dZ+C . (8.17) 416 Chapter8 DifferentialEquations Here the (dummy) variables of integration have been rewritten as capitals. Equation(8.17)isthecompletegeneralsolutionofthelinear,first-orderODE, Eq.(8.12).Theportion (cid:8) (cid:2) (cid:9) x y (x)=Cexp − p(X)dX (8.18) h correspondstothecaseq(x)=0andisageneralsolutionofthehomoge- neous ODE because it contains the integration constant. The other term in Eq.(8.17), (cid:8) (cid:2) (cid:9)(cid:2) (cid:8)(cid:2) (cid:9) x x Z y (x)=exp − p(X)dX exp p(Y)dY q(Z)dZ, (8.19) p is a particular solution of the inhomogeneous ODE corresponding to thespecificsourcetermq(x). Let us summarize this solution of the inhomogeneous ODE in terms of a methodcalledvariationoftheconstantasfollows.Inthefirststep,wesolve thehomogeneousODEbyseparationofvariablesasbefore,giving (cid:2) y(cid:15) x (cid:14) =−p, lny=− p(X)dX+lnC, y(x)=Ce− xp(X)dX. y Inthesecondstep,welettheintegrationconstantbecomex-dependent,that is,C → C(x).Thisisthevariationoftheconstantusedtosolvetheinhomo- geneousODE.Differentiating y(x)weobtain (cid:14) (cid:14) (cid:14) y(cid:15) =−pCe− p(x)dx+C(cid:15)(x)e− p(x)dx =−py(x)+C(cid:15)(x)e− p(x)dx. ComparingwiththeinhomogeneousODEwefindtheODEforC: (cid:2) (cid:14) x (cid:14) C(cid:15)e− p(x)dx =q, or C(x)= e Xp(Y)dYq(X)dX. (cid:14) SubstitutingthisC into y=C(x)e− xp(X)dX reproducesEq.(8.19). Now we prove the theorem that the solution of the inhomogeneous ODEisuniqueuptoanarbitrarymultipleofthesolutionofthehomo- geneousODE. To show this, suppose y , y both solve the inhomogeneous ODE [Eq. 1 2 (8.12)];then y(cid:15)−y(cid:15) + p(x)(y −y )=0 1 2 1 2 follows by subtracting the ODEs and states that y − y is a solution of the 1 2 homogeneous ODE. The solution of the homogeneous ODE can always be multipliedbyanarbitraryconstant. (cid:2) Wealsoprovethetheoremthatafirst-orderlinearhomogeneousODE hasonlyonelinearlyindependentsolution.Thisismeantinthefollowing sense. If two solutions are linearly dependent, by definition they satisfy ay(x)+by (x)=0withnonzeroconstantsa,bforallvaluesofx.Iftheonly 1 2 solutionofthislinearrelationisa = 0 = b, thenoursolutions y and y are 1 2 saidtobelinearlyindependent. 8.2 First-OrderODEs 417 Toprovethistheorem,suppose y , y bothsolvethehomogeneousODE. 1 2 Then y(cid:15) y(cid:15) 1 =−p(x)= 2 impliesW(x)≡ y(cid:15)y −y y(cid:15) ≡0. (8.20) y y 1 2 1 2 1 2 ThefunctionaldeterminantW iscalledtheWronskianofthepair y , y .We 1 2 now show that W ≡ 0 is the condition for them to be linearly dependent. Assuminglineardependence,thatis, ay(x)+by (x)=0 1 2 with nonzero constants a,b for all values of x, we differentiate this linear relationtogetanotherlinearrelation ay(cid:15)(x)+by(cid:15)(x)=0. 1 2 Theconditionforthesetwohomogeneouslinearequationsintheunknowns a,b to have a nontrivial solution is that their determinant be zero, which is W =0. Conversely,fromW =0, therefollowslineardependencebecausewecan findanontrivialsolutionoftherelation y(cid:15) y(cid:15) 1 = 2 y y 1 2 byintegration,whichgives lny =lny +lnC, or y =Cy . 1 2 1 2 LineardependenceandtheWronskianaregeneralizedtothreeormorefunc- tionsinSection8.3. (cid:2) EXAMPLE8.2.3 Linear Independence Thesolutionsofthelinearoscillatorequation y(cid:15)(cid:15)+ ω2y(x) = 0are y = sinωx, y = cosωx, whichwecheckbydifferentiation. 1 2 TheWronskianbecomes (cid:15) (cid:15) (cid:15) (cid:15) (cid:15)sinωx cosωx (cid:15) (cid:15) (cid:15)=−ω =(cid:4) 0. (cid:15)ωcosωx−ωsinωx(cid:15) Thesetwosolutions,y andy ,arethereforelinearlyindependent.Forjusttwo 1 2 functionsthismeansthatoneisnotamultipleoftheother,whichisobviously trueinthiscase. Youknowthat sinωx=±(1−cos2ωx)1/2, butthisisnotalinearrelation. (cid:2) Note that if our linear first-order differential equation is homogeneous (q = 0), then it is separable. Otherwise, apart from special cases such as p=constant,q =constant,orq(x)=ap(x),Eq.(8.12)isnotseparable. 418 Chapter8 DifferentialEquations Figure8.1 Circuitwith L Resistance Rand Inductance L in Series R V EXAMPLE8.2.4 RLCircuit Foraresistance–inductancecircuit(Fig.8.1andExample6.1.6) Kirchhoff’sfirstlawleadsto dI(t) L + RI(t)= V(t) (8.21) dt for the current I(t), where L is the inductance and R the resistance, both constant.Here,V(t)isthetime-dependentinputvoltage. FromEq.(8.16),ourintegratingfactorα(t)is (cid:2) t R α(t)=exp dT =eRt/L. L ThenbyEq.(8.17), (cid:8)(cid:2) (cid:9) t V(T) I(t)=e−Rt/L eRT/L dT +C , (8.22) L with the constant C to be determined by an initial condition (a boundary condition). ForthespecialcaseV(t)= V ,aconstant, 0 (cid:8) (cid:9) V L V I(t)=e−Rt/L 0 · eRt/L+C = 0 +Ce−Rt/L. L R R For a first-order ODE one initial condition has to be given. If it is I(0) = 0, thenC =−V /Rand 0 V I(t)= 0[1−e−Rt/L]. (cid:2) R ODEsofSpecialType LetusmentionafewmoretypesofODEsthatcanbeintegratedanalytically. 8.2 First-OrderODEs 419 EXAMPLE8.2.5 First-OrderODEs,withy/xDependence TheODE y(cid:15) = f(y/x)isnotof the form of Eq. (8.12) in general but is homogeneous in y. The substitution z(x) = y(x)/x, suggested by the form of the ODE, leads via y(cid:15) = xz(cid:15) +zto theODE xz(cid:15)+z= f(z), whichisnotofthetypeinEq.(8.12).However,itis separableandcanbeintegratedasfollows: (cid:2) (cid:2) f(z)−z dz dx z(cid:15) = , = =lnx+lnC. x f(z)−z x AnexplicitcaseistheODE y x xyy(cid:15) = y2−x2, or y(cid:15) = − . x y In terms of z(x) = y/x, we obtain xz(cid:15) +z= z− 1, or zdz= −dx/x, which z hasseparatedvariables.Weintegrateittogetz2 =C −√2lnx, whereC isthe integrationconstant.Wecheckthatoursolution y= x C −2lnxsatisfies √ (cid:16)√ yy(cid:15) y2 y(cid:15) = C −2lnx−1 C −2lnx, or = −1. x x2 TheconstantCisdeterminedbytheinitialcondition.If,forexample,y(1)=1, weobtainC =1. (cid:2) Clairaut’s ODE y= xy(cid:15)+ f(y(cid:15))canbesolvedinclosedformdespitethe generalnatureofthefunction f init. Replacing y(cid:15) byaconstantC,weverifythateachstraightline y= Cx + f(C)isasolution.Theslopeofeachstraightlinecoincideswiththedirection ofthetangentprescribedbytheODE.Asystematicmethodtofindthisclass ofsolutionsstartsbysetting y(cid:15) =u(x)intheODEsothat y= xu+ f(u)with thedifferentialudx=dy=udx+xdu+ f(cid:15)(u)du.Droppingtheudxtermwe find [x+ f(cid:15)(u)]du=0. Settingeachfactorequaltozero,du=0yieldsu=C =const.andthestraight linesagain.Next,eliminatingufromtheotherfactorsettozero, x+ f(cid:15)(u)=0, and y= xu+ f(u) generates another solution of Clairaut’s ODE, a curve (x(u), y(u)) that no longer contains the arbitrary constant C. From y(cid:15) = u, we verify y = xu+ f(u)= xy(cid:15)+ f(y(cid:15)).Thepairofcoordinatesx(u), y(u)givenpreviouslyrepre- sentsacurveparameterizedbythevariableu;itrepresentstheenvelope of the class of straight lines y= Cx+ f(C)forvariousvaluesofC thatare tangentstothiscurve.TheenvelopeofaclassofsolutionsofanODEiscalled itssingularsolution;itdoesnotinvolveanintegrationconstant(andcannot beadaptedtoinitialconditions). Ingeneral,geometricproblemsinwhichacurveistobedetermined frompropertiesofitstangentatx, yleadtoClairaut’sODEasfollows. Thetangentequationisgivenby Y −y= y(cid:15)(X−x), or Y = y(cid:15)X+(y−xy(cid:15)),

Description:
tives (e.g., acceleration in classical mechanics and the kinetic energy operator,. ∼∇2, in quantum tant power-series expansion method of solving ODEs is demonstrated using . Now integrating by inspection, we have α(x)y(x) =.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.