ebook img

Differential Equation Solutions With MATLAB: Fundamentals and Numerical Implementations (De Gruyter STEM) PDF

454 Pages·2020·8.893 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Differential Equation Solutions With MATLAB: Fundamentals and Numerical Implementations (De Gruyter STEM)

DingyüXue DifferentialEquationSolutionswithMATLAB® Also of Interest Fractional-OrderControlSystems,FundamentalsandNumerical Implementations DingyüXue,2017 ISBN978-3-11-049999-5,e-ISBN(PDF)978-3-11-049797-7, e-ISBN(EPUB)978-3-11-049719-9 CalculusProblemSolutionswithMATLAB® DingyüXue,2020 ISBN978-3-11-066362-4,e-ISBN(PDF)978-3-11-066697-7, e-ISBN(EPUB)978-3-11-066375-4 MATLAB®Programming,MathematicalProblemSolutions DingyüXue,2020 ISBN978-3-11-066356-3,e-ISBN(PDF)978-3-11-066695-3, e-ISBN(EPUB)978-3-11-066370-9 LinearAlgebraandMatrixComputationswithMATLAB® DingyüXue,2020 ISBN978-3-11-066363-1,e-ISBN(PDF)978-3-11-066699-1, e-ISBN(EPUB)978-3-11-066371-6 SolvingOptimizationProblemswithMATLAB® DingyüXue,2020 ISBN978-3-11-066364-8,e-ISBN(PDF)978-3-11-066701-1, e-ISBN(EPUB)978-3-11-066369-3 Dingyü Xue Differential Equation Solutions ® with MATLAB | Author Prof.DingyüXue SchoolofInformationScienceandEngineering NortheasternUniversity WenhuaRoad3rdStreet 110819Shenyang China [email protected] MATLABandSimulinkareregisteredtrademarksofTheMathWorks,Inc.Seewww.mathworks.com/ trademarksforalistofadditionaltrademarks.TheMathWorksPublisherLogoidentifiesbooksthat containMATLABandSimulinkcontent.Usedwithpermission.TheMathWorksdoesnotwarrantthe accuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussionofMATLABandSimulink softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksof aparticularuseoftheMATLABandSimulinksoftwareorrelatedproducts.ForMATLAB®and Simulink®productinformation,orinformationonotherrelatedproducts,pleasecontact: TheMathWorks,Inc. 3AppleHillDrive Natick,MA,01760-2098USA Tel:508-647-700 Fax:508-647-7001 E-mail:[email protected] Web:www.mathworks.com ISBN978-3-11-067524-5 e-ISBN(PDF)978-3-11-067525-2 e-ISBN(EPUB)978-3-11-067531-3 LibraryofCongressControlNumber:2020931439 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2020TsinghuaUniversityPressLimitedandWalterdeGruyterGmbH,Berlin/Boston Coverimage:DingyüXue Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Scientificcomputingiscommonlyandinevitablyencounteredincourselearning,sci- entificresearchandengineeringpracticeforeachscientificandengineeringstudent andresearcher.Forthestudentsandresearchersinthedisciplineswhicharenotpure mathematics,itisusuallynotawisethingtolearnthoroughlylow-leveldetailsofre- latedmathematicalproblems,andalsoitisnotasimplethingtofindsolutionsofcom- plicatedproblemsbyhand.Itisaneffectivewaytotacklescientificproblems,with highefficiencyandin accurateand creativemanner,withthe mostadvancedcom- putertools.Thismethodisespeciallyusefulinsatisfyingtheneedsforthoseinthe areaofscienceandengineering. Theauthorhadmadesomeefforttowardsthisgoalbyaddressingdirectlytheso- lutionmethodsforvariousbranchesinmathematicsinasinglebook.Suchabook, entitled“MATLABbasedsolutionstoadvancedappliedmathematics”,waspublished firstin2004byTsinghuaUniversityPress.Severalneweditionswerepublishedafter- wards:in2015,thesecondeditioninEnglishbyCRCPress,andin2018,thefourth editioninChinesewerepublished.BasedonthelatestChineseedition,abrandnew MOOCprojectwasreleasedin2018,1 andreceivedsignificantattention.Thenumber ofregisteredstudentswasaround14000inthefirstroundoftheMOOCcourse,and reachedtensofthousandsinlaterrounds.Thetextbookhasbeencitedtensofthou- sandstimesbyjournalpapers,books,anddegreetheses. Theauthorhasover30yearsofextensiveexperienceofusingMATLABinscientific researchandeducation.Significantamountofmaterialsandfirst-handknowledgehas beenaccumulated,whichcannotbecoveredinasinglebook.Aseriesentitled“Profes- sorXueDingyü’sLectureHall”ofsuchworksarescheduledwithTsinghuaUniversity Press,andtheEnglisheditionsareincludedintheDGSTEMserieswithDeGruyter. Thesebooksareintendedtoprovidesystematic,extensiveanddeepexplorationsin scientificcomputingskillswiththeuseofMATLABandrelatedtools.Theauthorwants toexpresshissinceregratitudetohissupervisor,ProfessorDerekAthertonofSussex University,whofirstbroughthimintotheparadiseofMATLAB. TheMATLABseriesisnotasimplerevisionoftheexistingbooks.Withdecadesof experienceandmaterialaccumulation,theideaof“revisiting”isadoptedinauthor- ingtheseries,incontrasttoothermathematicsandotherMATLAB-richbooks.The viewpointofanengineeringprofessorisestablishedandthefocusinonsolvingvar- iousappliedmathematicalproblemswithtools.Manyinnovativeskillsandgeneral- purposesolversareprovidedtosolveproblemswithMATLAB,whichisnotpossible byanyotherexistingsolvers,soastobetterillustratetheapplicationsofcomputer toolsinsolvingmathematicalproblemsineverymathematicsbranch.Italsohelps thereadersbroadentheirviewpointsinsolvingscientificcomputing,andevenfind 1 MOOCaddress:https://www.icourse163.org/learn/NEU-1002660001 https://doi.org/10.1515/9783110675252-201 VI | Preface innovativesolutionsbythemselvestoscientificcomputingwhichcannotbesolvedby anyotherexistingmethods. ThefirsttitleintheMATLABseries,“MATLABProgramming”,canbeusedasan entry-level textbook or reference book to MATLAB programming, so as to establish asolidfoundationanddeepunderstandingfortheapplicationofMATLABinscien- tificcomputing.Eachsubsequentvolumetriestocoverabranchortopicinmathe- maticalcourses.Bearinginmindthe“computationalthinking”inauthoringthese- ries,deepunderstandingandexplorationsaremadeforeachmathematicsbranchin- volved.TheseMATLABbooksaresuitableforthereaderswhohavealreadylearntthe relatedmathematicalcourses,andrevisitthecoursestolearnhowtosolvetheprob- lemsbyusingcomputertools.Itcanalsobeusedasacompanioninsynchronizing thelearningofrelatedmathematicscourses,andviewingthecoursefromadifferent angle,sothatthereadersmayexpandtheirknowledgeinlearningtherelatedcourses, soastobetterlearn,understandandpracticethematerialsinthecourses. ThisbookisthefifthoneintheMATLABseriesandfullydevotedtothesolutions of various differential equations, with extensive use of MATLAB. The analytical so- lutionsofordinarydifferentialequationsarestudiedfirst,followedbynumericalso- lutionstoinitialvalueproblemsofvariousordinarydifferentialequations,including conventionalandspecialequations,delaydifferentialequations,andfractionaldif- ferentialequations.Somepropertyanalysistasksarealsocoveredinthisbook,and blockdiagram-basedpatternstovariousdifferentialequationsareaddressed.Discus- sionsarealsomadetothenumericalsolutionapproachestoboundaryvalueproblems andpartialdifferentialequations. Atthetimethebooksarepublished,theauthorwishestoexpresshissinceregrati- tudetohiswife,ProfessorYangJun.Herloveandselflesscareoverthedecadesprovide theauthorimmensepower,whichsupportstheauthors’academicresearch,teaching, andwriting. September2019 XueDingyü Contents Preface|V 1 Anintroductiontodifferentialequations|1 1.1 Introductiontodifferentialequationmodeling|1 1.1.1 Modelingofanelectriccircuit|1 1.1.2 Modelinginmechanicalsystems|3 1.1.3 Modelsinsocialsystems|4 1.2 Abriefhistoryofdifferentialequations|6 1.3 Outlineandmaintopicsinthebook|8 1.4 Exercises|10 2 Analyticalsolutionsofordinarydifferentialequations|11 2.1 Analyticalsolutionsoffirst-orderdifferentialequations|11 2.1.1 Differentialequationsolvablebysimpleintegrals|12 2.1.2 Homogeneousdifferentialequations|13 2.1.3 Inhomogeneouslineardifferentialequations|14 2.1.4 Nonlineardifferentialequationswithseparablevariables|15 2.2 Specialfunctionsandsecond-orderdifferentialequations|17 2.2.1 Gammafunction|17 2.2.2 Hypergeometricfunctions|19 2.2.3 Besseldifferentialequations|20 2.2.4 Legendredifferentialequationsandfunctions|22 2.2.5 Airyfunctions|23 2.3 Solutionsoflineardifferentialequationswithconstant coefficients|25 2.3.1 Mathematicalmodelingoflinearconstant-coefficientdifferential equations|25 2.3.2 Laplacetransform-basedsolutions|26 2.3.3 Solutionsofinhomogeneousdifferentialequations|28 2.3.4 Solutionsofdifferentialequationswithnonzeroinitialvalues|29 2.4 Analyticalsolutionsofordinarydifferentialequations|32 2.4.1 Analyticalsolutionsofsimpledifferentialequations|32 2.4.2 Analyticalsolutionsofhigh-orderlineardifferentialequationswith constantcoefficients|35 2.4.3 Analyticalsolutionsoflineartime-varyingdifferentialequations|38 2.4.4 Solutionsoftime-varyingdifferentialequationsets|40 2.4.5 Solutionsofboundaryvalueproblems|41 2.5 Solutionsoflinearmatrixdifferentialequations|42 2.5.1 Analyticalsolutionsoflinearstatespaceequations|43 2.5.2 Directsolutionsofstatespacemodels|45 VIII | Contents 2.5.3 SolutionofSylvesterdifferentialequation|46 2.5.4 Kroneckerproduct-basedsolutionsofSylvesterdifferential equations|47 2.6 Analyticalsolutionstospecialnonlineardifferentialequations|48 2.6.1 Solvablenonlineardifferentialequations|48 2.6.2 Nonlineardifferentialequationswhereanalyticalsolutionsarenot available|50 2.7 Exercises|51 3 Initialvalueproblems|55 3.1 Initialvaluedescriptionsforfirst-orderexplicitdifferential equations|55 3.1.1 Mathematicalformsofinitialvalueproblems|55 3.1.2 Existenceanduniquenessofsolutions|56 3.2 Implementationoffixed-stepnumericalalgorithms|57 3.2.1 Euler’smethod|57 3.2.2 Second-orderRunge–Kuttaalgorithm|60 3.2.3 Fourth-orderRunge–Kuttaalgorithm|62 3.2.4 Gill’salgorithm|64 3.2.5 ThemthorderRunge–Kuttaalgorithm|65 3.2.6 Multistepalgorithmsandimplementation|68 3.3 Variable-stepnumericalalgorithmsandimplementations|70 3.3.1 Measurestoincreaseefficiency|71 3.3.2 Anintroductiontovariable-stepalgorithms|72 3.3.3 The4/5thorderRunge–Kuttavariable-stepalgorithm|73 3.3.4 ThedifferentialequationsolverprovidedinMATLAB|74 3.3.5 Solutionsofdifferentialequationswithadditionalparameters|80 3.3.6 Avoidingtheuseofadditionalparameters|82 3.4 Validationsofnumericalsolutions|83 3.4.1 Validationofthecomputationresults|83 3.4.2 Dynamicmanipulationofintermediateresults|86 3.4.3 Moreaccuratesolvers|87 3.4.4 Step-sizesandfixed-stepdisplay|88 3.4.5 Demonstrationsofhigh-ordernonlineardifferentialequations|91 3.5 Exercises|93 4 Standardformconversionsofordinarydifferentialequations|99 4.1 Conversionmethodforasinglehigh-orderdifferentialequation|99 4.1.1 Conversionofexplicitequations|100 4.1.2 Solutionsoftime-varyingdifferentialequations|104 4.1.3 Singularitiesindifferentialequations|106 4.1.4 Stateaugmentationforconstantparameters|108 Contents | IX 4.2 Conversionsofcomplicatedhigh-orderdifferentialequations|109 4.2.1 Equationscontainingthesquareofthehighest-orderderivative|110 4.2.2 Equationscontainingoddpowers|112 4.2.3 Equationscontainingnonlinearoperations|113 4.3 Conversionsofdifferentialequationsets|114 4.3.1 Simpleexplicitdifferentialequationsets|115 4.3.2 Limitationswithfixed-stepmethods|122 4.3.3 Simpleimplicitdifferentialequations|124 4.3.4 Evenmorecomplicatednonlineardifferentialequations|127 4.4 Conversionsformatrixdifferentialequations|129 4.4.1 Conversionandsolutionsofdifferentialequationsinmatrix form|129 4.4.2 Sylvesterdifferentialequations|132 4.4.3 Riccatidifferentialequations|133 4.5 ConversionsofaclassofVolterraintegro-differentialequations|135 4.6 Exercises|139 5 Specialdifferentialequations|145 5.1 Stiffdifferentialequations|145 5.1.1 Timeconstantsinlineardifferentialequations|146 5.1.2 Demonstrationsofstiffphenomena|146 5.1.3 Directsolutionofstiffdifferentialequations|149 5.1.4 Stiffnessdetection|152 5.1.5 Fixed-stepsolutionofstiffdifferentialequations|157 5.2 Implicitdifferentialequations|158 5.2.1 Mathematicaldescriptionofimplicitdifferentialequations|159 5.2.2 Consistentinitialvaluetransformation|160 5.2.3 Directsolutionofimplicitdifferentialequations|163 5.2.4 Implicitdifferentialequationswithmultiplesolutions|166 5.3 Differential-algebraicequations|168 5.3.1 Generalformofdifferential-algebraicequations|168 5.3.2 Indicesofdifferential-algebraicequations|169 5.3.3 Semi-explicitdifferential-algebraicequations|169 5.3.4 Limitationsofthedirectsolver|173 5.3.5 Implicitsolversfordifferential-algebraicequations|175 5.3.6 Indexreductionfordifferential-algebraicequations|180 5.4 Switcheddifferentialequations|183 5.4.1 Linearswitcheddifferentialequations|183 5.4.2 Zero-crossingdetectionandeventhandling|185 5.4.3 Nonlinearswitcheddifferentialequations|188 5.4.4 Discontinuousdifferentialequations|190 5.5 Linearstochasticdifferentialequations|191

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.