©EntomologicaFennica.20December2011 Differences in mosquito (Diptera: Culicidae) biodiversity across varying climates and land-use categories in Eastern Spain RubénBuenoMarí&RicardoJiménez-Peydró BuenoMarí,R.&Jiménez-Peydró,R.2011:Differencesinmosquito(Diptera: Culicidae)biodiversityacrossvaryingclimatesandland-usecategoriesinEast- ernSpain.—Entomol.Fennica22:190–198. Intensivelarvalsamplingsofmosquitoes(Diptera:Culicidae)werecarriedout between2005and2008inseveralbiotopeslocatedinavaryingclimateregionin EasternSpain.Thebiodiversitywasanalyzedanddividedintoalpha,betaand gamma components with the aim of comparing the mosquito biodiversity ac- cordingtothedifferentstructureofthelandscapeduetotheincidenceofclimatic andanthropicpatterns.LikewisethesynanthropicindexofNuortevawascalcu- latedforeachspecies.Atotalof11,279mosquitoesbelongingto29specieswas collectedandidentified.Mosquitobiodiversityishigherinthewettestandnon- anthropizedareas.Usingaclusteranalysis,allthisinformationwasalsousedto groupthedifferentregionsstudieddependingonitsmosquitofauna.Moreover there-emergenceofantroponosis,likemalaria,seemsunlikelygiventhelowval- uesofthesynanthropicindexfortheanophelinescaptured. R.BuenoMarí&R.Jiménez-Peydró,EntomologyandPestControlLaboratory, CavanillesInstituteforBiodiversityandEvolutionaryBiology,UniversityofVa- lencia,OfficialPost22085,46071Valencia,Spain;E-mailaddressofthecorre- spondingauthor:[email protected] Received29July2010,accepted10January2011 1.Introduction tobeaveryusefultool(Whittaker1972).Theal- phadiversity(a)isthespecificrichnessofacom- Mosquitoes,likeotherorganismsshowaspatial munitythatweconsiderhomogeneous.Thebeta variationinrelationtoseveralfactorssuchasen- diversity(b)referstothedegreeofreplacementin vironmental heterogeneity or habitat and host thespecificcompositionbetweendifferentcom- preferences (Zhong et al. 2003). Understanding munitiesofalandscape.Andlastlywecandefine thelinksbetweenhabitats,environmentalfactors thegammadiversity(g)asthespecificrichnessof andoccurrenceofimmaturemosquitoes(Dipte- thegroupedcommunitiesthatformalandscape, ra:Culicidae)isessentialforanefficientapplica- resulting from both alpha and beta diversities. tionofmosquitocontrolmethods(PemolaDevi Thismethodofbiodiversityanalysisisusefulnot &Jauhari2007). onlytoexploretheclimatic,physicalorbiologi- Tocomparemosquitodiversity accordingto cal influences on biodiversity, but also to study thestructureofthelandscape,thedivisionofthe the effects of human pressure on biodiversity alpha,betaandgammacomponentsisconsidered (Halffter 1998, Moreno 2001). Although it is a ENTOMOL.FENNICAVol.22 (cid:127) MosquitobiodiversityinSpain 191 methodmuchusedtoestimatethebiodiversityof manyinsects,thereislittleinformationaboutits useinmosquitostudies. Our aim was to investigate the changes in mosquitobiodiversityduetoenvironmental(cli- maticandanthropic)factorsinEasternSpain. 2.Materialandmethods 2.1.Studyarea In Spain studies of mosquito biodiversity are scantandoutdated,mostlyconcernedwithtimes whenmalariawasendemic(BuenoMarí&Jimé- nezPeydró2008).Atotalof64mosquitospecies havebeen reported in Spain, butsomeofthem, like Anopheles labranchiae Falleroni or Aedes aegypti (Linnaeus), are currently considered eradicated or absent (Bueno Marí & Jiménez Peydró2011).Consequently,recordsofonly54 speciesareconsideredvalidatpresent(Eritjaet al.2000).ForourstudyweselectedtheValencian AutonomousRegion(Fig.1)duetoitsheteroge- neity of climate. In this Mediterranean area we differentiatedbetweenfiveregionsorsectorsac- cordingtotheirpatternsoftemperatureandpre- cipitation(GVA,2003): – Setabensesector(S):Characterizedbyatypi- cal Mediterranean climate, with low oscilla- tionsofmeantemperature((cid:1)13ºC)between winterandsummer,andpeakprecipitationsin autumn. Fig.1.Situationofthestudyareawiththefivecoro- – Valenciano-Tarraconense sector (VT): Simi- logicalsectors.AM:Alicantino-Murcianosector,MN: larly represents a typical Mediterranean cli- Manchegosector,MS:Maestracensesector,S:Seta- bensesectorandVT:Valenciano-Tarraconensesec- mate,butwithhigherhomogeneityinthespa- tor. tialdistributionofprecipitationsthanS. – Maestracensesector(MS):Characterizedby aMediterranean climatestrongly influenced ing an intermediate climate between typical byaContinentalclimate.Therearewidetem- MediterraneanandDeserticclimate. peratureoscillations((cid:1)18ºC)betweenwinter and summer, and peak precipitations during Tostudy theeffectsofhumanpressureonmos- spring.Moreoveritisthecoldestandwettest quitobiodiversity,eachlarvalbiotopewastypi- regionofthestudyarea. fiedaccordingtoitsanthropizationdegreeasfol- – Manchegosector(MN):Despiteitalsohasa lows: Continentalinfluence,itcanbeeasilydistin- guishedfromMSduetoitslowertopography. – Urban biotope or high anthropization area: – Alicantino-Murciano sector (AM): Charac- situated in permanent human settlements or terizedbyadryMediterraneanclimate,show- surroundings. 192 BuenoMarí&Jiménez-Peydró (cid:127) ENTOMOL.FENNICAVol.22 Table1.Indicesandformulaeusedtoestimatealpha,betaandgammadiversities. Estimation Indices Formulae# Alphadiversity Margalef(D ) D =S–1/lnN Simpson(l)Mg lM=gSp² Shannon-Wiener(H’) H’=–Si p lnp i i EquityofPielou(J’) J’=H’/H’max=H’/lnS Betadiversity Jaccard(I) I =c/a+b–c J J Whittaker(b )/(b)* b =S/a–1/(b)*=1–d w w Gammadiversity Gamma(g) g=a×b×e #S:speciesrichness,N:totalnumberofindividuals,p:frequencyofspeciesi,a:numberofspeciespresentinsiteA,b:number i ofspeciespresentinsiteB,c:numberofspeciespresentinbothsiteAandB,d:averagenumberofsamplesoccupiedbyone species,a:averagenumberofspeciesinacommunity,e:totalnumberofcommunitiesstudied. *ModificationproposedbySchluter&Ricklefs(1993)tocalculatetheaverageb. – Ruralbiotopeormediumanthropizationarea: 2.2.Samplingmethods placedintemporaryhumansettlements(live- stockoragriculturalareas)orsurroundings. Usingsimplerandomsampling,wesampledlar- – Wildbiotopeorlowanthropizationarea:po- val forms frommultiple sites within each study sitionedinnaturalareaswithoutapparenthu- sector using thedipping method (Service1993) manactionsaroundit. for8monthsayear(March–October)2005–2008 (4 years). Data were collected fromall identifi- Thishabitatcharacterizationallowedustoapply ableaquaticenvironmentsacross23,260km2of the Nuorteva synanthropic index (Nuorteva thestudyarea. 1963) to evaluate the domiciliation degree of eachspeciescaught: 2.3.Dataanalysis (S)=(2a+b –2c)/2 (1), i i i Mosquitoeswereidentifiedaccordingtothekeys wherea,bandcrepresentsthepercentageofcap- ofEncinasGrandes(1982),Darsie&Saminadou turesoftheispeciesinurban,ruralandwildareas Voyadjoglou(1997)andSchaffneretal.(2001). respectively.Thevaluesoftheindexrangefrom ThenomenclaturalcriteriawerebasedonReinert +100 (highest degree of domiciliation) to –100 (2000).Datawereanalyzedstatisticallyusingthe (lowest degree of domiciliation). The domicili- Biodiversity.Rpackage(Kindt&Coe2005).For ationdegreereferstothepreferenceofdifferent eachenvironmentwecalculatedseveralbiodiver- speciestobreedand/ordevelopinanthropicenvi- sityindices(Table1).Tocalculatetheecological ronments.Fromthepointofviewofdiseasevec- distancebetweendifferentenvironments,wede- tors, the domiciliation degree is postulated as a velopedaclusteranalysisandaprincipalcompo- veryimportantevolutionaryissuetoexplainthe nentanalysis(PCA),bothbasedonJaccarddis- emergenceandendemismofhumandiseasesthat tance.Thecopheneticcorrelationwasalsocalcu- previously wereexclusivezoonoses.TheNuor- latedforeachJaccardclusterwiththeaimofcal- tevaindexwasinitiallyproposedforthestudyof culatingthedegreeofreliabilityoftheclassifica- synanthropic flies, but has also been used with tion system used (R Development Core Team culicidmosquitoes(Forattinietal.1993).Given 2005). the fact that human settlements are frequently linkedtotheworseningofwaterquality,theuse ofthisindexcouldbeinteresting,notonlytoeval- 3.Results uate the anthropophilic degree of each species, butalsotoelucidatetheirtolerancelevelsofwater In the larval captures of 679 different sampling eutrophication. points,atotalof11,279mosquitoesbelongingto ENTOMOL.FENNICAVol.22 (cid:127) MosquitobiodiversityinSpain 193 Table2.–A.Numberspecimensofspeciesinfivegenusescapturedindifferentenvironments,andsynanthropic indices(SI).–B.Estimatorsofalphabiodiversity.Fortheabbreviationsofcorologicalsectors,seeFig.1. Corologicalsectors Areas AM MN MS S VT Urban Rural Wild SI A.No.ofspecimensandSI Aedes A.vexans 0 0 89 0 8 0 85 12 6.5 A.vittatus 0 0 0 1 50 0 5 46 –79 Anopheles A.algeriensis 16 9 0 20 0 0 33 12 12.5 A.atroparvus 0 4 61 0 26 0 25 66 –56.5 A.claviger 0 7 25 2 0 0 2 32 –79 A.maculipennis 0 0 61 0 13 0 9 65 –67 A.marteri 0 0 3 0 0 0 0 3 –50 A.petragnani 0 7 147 187 145 0 88 398 –61 A.plumbeus 0 0 171 0 0 0 171 0 50 Culiseta C.annulata 0 0 4 2 35 0 18 23 –37 C.longiareolata 239 102 693 788 797 411 1,379 829 13 C.subochrea 1 2 10 8 108 0 60 69 –35.5 Culex C.hortensis 18 44 455 75 111 0 207 496 –58.5 C.impudicus 0 7 30 22 26 0 20 65 –64 C.laticinctus 1 47 205 177 482 158 451 303 –12.5 C.mimeticus 7 15 74 123 123 0 111 231 –53.5 C.modestus 2 0 5 122 70 0 164 35 17 C.pipiens 587 61 346 1,395 1,129 729 2,011 778 21 C.territans 10 27 197 133 121 0 158 330 –51 C.theileri 26 2 0 6 42 0 50 26 0.5 Ochlerotatus O.berlandi 0 0 42 0 0 0 42 0 50 O.caspius 312 12 4 103 207 69 364 205 21 O.detritus 60 0 0 24 77 13 90 58 2 O.echinus 0 0 45 89 11 0 119 26 0.5 O.geniculatus 0 0 4 49 9 0 48 14 6.5 O.gilcolladoi 0 0 2 13 0 0 0 15 –50 O.pulcritarsis 0 0 14 0 0 0 14 0 50 Orthopodomyia O.pulchripalpis 0 0 10 0 0 0 10 0 50 Uranotaenia U.unguiculata 0 0 0 0 28 0 17 11 0.5 B.Alphadiversity Abundance 1,279 346 2,687 3,339 3,618 1,380 5,751 4,148 Specificrichness(S) 12 14 24 20 21 5 27 25 Margalefindex(D ) 1.54 2.22 2.91 2.34 2.44 0.55 3 2.88 Mg Simpsonindex(l) 0.69 0.84 0.87 0.76 0.83 0.62 0.8 0.88 Shannon-Wienerindex(H’) 1.44 2.09 2.37 1.9 2.19 1.14 2.17 2.46 EquityofPielouindex(J’) 0.58 0.79 0.75 0.63 0.72 0.36 0.66 0.89 29specieswereidentified(Table2).Thecompar- sector;itfeaturesbodiesofwateringreaterquan- isonofabiodiversityindicesrevealsthattheMS tityandtypologicaldiversity. sectoristhemostdiverse(D =2.91,l=0.87, Concerning the degree of environmental Mg H’=2.37)andtheAMtheleastdiverse(D = anthropization, we suggest that human settle- Mg 1.54,l=0.69,H’=1.44).MSsectoristhewettest mentsnegativelyinfluencemosquitobiodiversi- 194 BuenoMarí&Jiménez-Peydró (cid:127) ENTOMOL.FENNICAVol.22 Table3.Estimatorsofbetabiodiversityforeachcommunitycomparison.Fortheabbreviationsofcorologicalsec- tors,seeFig.1.Theaveragebforcomparisonsofcorologicalsectorsis0.32andthatforareasis0.51. Comparisons Jaccard(I) Jaccarddistance(Cluster) Whittaker(b ) J w Corologicalsectors AM-MN 0.63 0.84 1.33 AM-MS 0.33 0.81 1.47 AM-S 0.6 0.72 1.33 AM-VT 0.5 0.69 1.42 MN-MS 0.46 0.88 1.39 MN-S 0.62 0.9 1.31 MN-VT 0.52 0.9 1.39 MS-S 0.57 0.6 1.29 MS-VT 0.61 0.6 1.06 S-VT 0.71 0.3 1.07 Areas Urban-Wild 0.2 0.6 1.79 Urban-Rural 0.19 0.7 1.8 Wild-Rural 0.8 0.5 1.16 ty: urban biotopes (D = 0.55, l = 0.62, H’ = Mg 1.14),ruralbiotopes(D =3,l=0.80,H’=2.17) Mg and wild biotopes (D = 2.88, l = 0.88, H’ = Mg 2.46). With the exception of tree hole breeding mosquitoes,associatedmostlywithforestdistri- bution,thesynanthropicindexofNuortevaindi- cates that anophelines, excepting Anopheles algeriensis Theobald (S = 12.5), show low domiciliation degree, whereas Culex pipiens Linnaeus,Ochlerotatuscaspius(Pallas),Culiseta longiareolata (Macquart) and Culex modestus Ficalbiarespeciesbetterassociatedwithhabitats which present surrounding human settlements. Furthermore,otherspecies,likeCulexhortensis Ficalbi(S=–58.5),CuleximpudicusFicalbi(S= –64),CulexterritansWalker(S=–55)andCulex mimeticusNoè(S=–53.5),exhibitastrongpref- erenceforwildenvironments. Theanalysisofbbiodiversity(Table3)indi- catesthatSandVTaretheclosestsectorsintheir specificcompositions(I =0.71),thespecificre- J placementamongthembeingconsequentlyvery low(b =1.07).Itisimportanttorememberthat w both sectors are the only representatives of the typicalMediterraneanclimateinourstudyarea. With regard to the degree of environmental anthropization,theruralandwildbiotopesarethe Fig.2.ClusteranalysisusingJaccarddistance.–a. closest(I =0.80),andconsequentlyalsoshowa Corologicalsectors,copheneticcorrelation(r)=0.98. lowspeciJficreplacement(b =1.16). –b.Degreeofanthropization,(r)=0.88.Forcthe w c The dendrograms elaborated from Jaccard abbreviationsofcorologicalsectors,seeFig.1. ENTOMOL.FENNICAVol.22 (cid:127) MosquitobiodiversityinSpain 195 Fig.3.PrincipalcomponentanalysisbasedonJaccarddistance.Fortheabbreviationsof corologicalsectors,seeFig.1.PCvalues(PC1,PC2)ofspecieswithintheboxes:Upperbox: Aedesvittatus(0.2,0.2),Anophelesalgeriensis(–2.9,0.5),A.atroparvus(–3.2,–3.1),A.clavi- ger(–2.7,–0.9),A.maculipennis(–3.1,–3.1),A.marteri(–0.2,–0.2),Culisetaannulata(–0.1, –0.2),C.subochrea(–0.2,–0.1),Culeximpudicus(–0.2,–3.1),C.mimeticus(0.2,–2.8),C.mo- destus(0.5,0.4),C.theileri(–0.1,–0.2),Ochlerotatusberlandi(–2.9,–2.6),O.echinus(–0.2, –1.1),O.geniculatus(–0.2,–0.8),O.gilcolladoi(–0.1,–0.7),O.pulcritarsis(–0.2,–0.7),Ortho- podomyiapulchripalpis(–0.2,–0.6)andUranotaeniaunguiculata(–0.2,–0.5);Lowerbox:Culex territans(0,–8)andAnophelesplumbeus(–3.3,–8.1). distance (Fig. 2) corroborate the same conclu- Anopheles petragnani Del Vecchio best define sions already given. The high values of jaccard theaxisclosesttowildenvironments(Fig.4). distance cophenitic correlations (r = 0.98, Finally,g is29.12andg is29.07. climatic (climatic) (anthropic) r =0.88)indicatehighcorrelationbetween Thesebotharevirtuallyidenticaltothevalueof anthropic theecologicaldistanceobservedinourstudyand thetotalspeciesrichness(29species)foundinthe thedistancepredictedinthehierarchicalconfigu- studyarea. rationoftheclusters. ThePCAanalysisshowsthatC.hortensisand O.caspiusarethespeciesthatbestdefinetheaxes 4.Discussion closesttoMS(wettestandhighestbiodiversity) andAM(driestandlowestbiodiversity),respec- Resultsfromourstudyshowthatmosquitodiver- tively (Fig. 3). The opposite nature of the axes sityvariesacrossclimatesandlandusepatterns. seemstoindicatethatthespeciesshouldalsoex- Previous researchers have proposed the use of hibitoppositebehaviours. mosquitoes as bio-indicators of forest degrada- In accordance with the values of the tion(Dorvillé1996)andofanthropicpressureon synanthropicindex,thesecondPCAalsoreveals othernaturalenvironments(Montes2005).MSis thatC.hortensis,C.mimeticus,C.territansand thewettestsector,consequentlytheabundanceof 196 BuenoMarí&Jiménez-Peydró (cid:127) ENTOMOL.FENNICAVol.22 Fig.4.PrincipalcomponentsanalysisbasedonJaccarddistance.PCvalues(PC1,PC2)of specieswithinthebox:Aedesvittatus(0.8,–1),A.vexans(1.6,–2.1),Anophelesalgeriensis (–1.1,0.2),A.atroparvus(–2.8,–3.1),A.claviger(2.2,–0.8),A.maculipennis(1.9,–1),A.mar- teri(–0.4,0.2),Culisetaannulata(–2.2,–1.7),C.subochrea(–2,–1.5),Culeximpudicus(0.3,– 0.5),C.modestus(1.5,–2.3),C.theileri(–0.8,–1.1),Ochlerotatusdetritus(2.2,–2.1),O.berl- andi(0.1,0.2),O.echinus(–0.2,0.6),O.geniculatus(0.3,0.9),O.gilcolladoi(–0.5,–0.9),O. pulcritarsis(0,–0.4),Orthopodomyiapulchripalpis(0.4,–0.6),Uranotaeniaunguiculata(1.6,–2). water and hetereogeneity of aquatic environ- the different species catched (Schaffner et al. ments increase the appearance of colonizable 2001).However,inthissituationthereisproba- habitats for many species, thereby increasing bly also an underlying human factor, since the mosquitobiodiversity.Ontheotherhand,AMis coastalareasaretheregionswherehumansettle- thedriestsector,thusonlyafewspecieswereca- ments tend to accumulate most, while inland pableofadaptingtothisadversesituation.Simp- areashavehighermosquitobiodiversity.Thishy- sonindicesshowdominancebyoneormorespe- pothesis is also supported by thedatarelated to ciesthatarecharacterizedby theirhighpropor- thebiodiversityinurban,ruralandwildenviron- tional abundance. In general, regardless of the ments. In this respect it is well known that C. sector, C. pipiens and C. longiareolata are the hortensis is a zoophile (mainly feeding on ba- dominant species. In addition, high dominance trachians and reptiles) and orophilic species, should also be noted in C. hortensis in MS, O. which prefers to colonize freshwater environ- caspiusinAMandCulexlaticinctusNoèinVT. mentsandcancompleteitsdevelopmentinvery Ourstudyrevealsthatthewettestregionspresent varied breeding sites (Schaffner et al. 2001, highermosquitobiodiversitythanthedriestones, BuenoMaríetal.2009a).Incontrast,O.caspius especiallyinMediterraneanclimateswheretem- is a species characterized by a high anthropo- peratureisnotalimitingfactor. philicbehavior,verycommonincoastalareasof ThevaluesofNuorteva’ssynanthropicindex the Paleartic Region and highly associated with arewellrelatedwiththehostpreferencesandtol- temporary puddles of brackish waters (Rioux erationofdifferentwaterqualitiesdescribedfor 1958,Schaffneretal.2001).Inconclusion,ahigh ENTOMOL.FENNICAVol.22 (cid:127) MosquitobiodiversityinSpain 197 anthropizationdoesnotimplyareductionofmos- advice on statistical treatment of data. We also want to quito population in urban environments, but pointoutthatthisarticlewaspartiallyfundedbyResearch ProjectCGL2009-11364(BOS),supportedbytheMinis- ratheraselectionfilterthatisonlysurpassedbya try of Science and Innovation of Spain (Ministerio de fewspecies. CienciaeInnovacióndelGobiernodeEspaña). Moreover, Fig. 4 indicates that the co-exis- tenceofC.hortensis,C.mimeticus,C.territans orA.petragnanicouldbeusedasabioindicator References element for wild environments. On the other hand,C.pipiensandC.longiareolataarespecies Aranda,C.,Eritja,R.&Roiz,D.2006:Firstrecordand that have a high biological plasticity and there- establishment of the mosquito Aedes albopictus in forecanbreedinenvironmentswithwidelyvary- Spain. — Medical and Veterinary Entomology 20: ingdegreesofhumanpressure. 150–152. Blázquez,J.&DeZulueta,J.1980:Thedisappearanceof Faunistically,itisimportanttonotethatofthe AnopheleslabranchiaefromSpain.—Parassitologia 29 mosquito species observed in this work, 13 22:161–163. haveneverbeenrecordedpreviouslyinthestudy BuenoMarí,R.&JiménezPeydró,R.2008:Malariaen area (Romeo Viamonte 1950, Encinas Grandes España:aspectosentomológicosyperspectivasdefu- 1982).Thisstudyallowedthecaptureofspecies turo.—RevistaEspañoladeSaludPública82:467– 489.[InSpanish.] poorly and irregularly found in Spain such as BuenoMarí,R.,ChordáOlmos,F.A.,BernuésBañeres,A. AnophelesmarteriPrunelleandUranoteniaun- &JiménezPeydró,R.2009a:Aportacionesalconoci- guiculata Edwards (Torres Cañamares 1979, mientodelosmosquitos(Diptera,Culicidae)dealta Bueno Marí et al. 2010), among others. The montañapresentesenlaPenínsulaIbérica.—Pirineos synanthropicindicesfortheanophelinesconfirm 164:49–68.[InSpanish.] BuenoMarí,R.,ChordáOlmosF.A.,BernuésBañeresA. the low malariogenic potential described for &JiménezPeydró,R.2009b:DeteccióndeAedesal- Spain (Bueno Marí & Jiménez Peydró 2010a). bopictus (Skuse, 1894) en Torrevieja (Alicante). — Moreover, no A. labranchiae were found, the BoletíndelaAsociaciónespañoladeEntomología33: Spanish distribution of which has previously 529–532.[InSpanish.] beencircumscribedsouthofourstudyarea.The BuenoMarí,R.&JiménezPeydró,R.2010a:Puedenla malariayeldenguereaparecerenEspaña?—Gaceta dramatic reduction of irrigated agriculture in Sanitaria24:347–353.[InSpanish.] SoutheasternSpainperhapsledtotheeradication BuenoMarí,R.&JiménezPeydró,R.2010b:Newanop- ofA.labranchiae(Eritjaetal.2000).Thisspecies helinerecordsfromtheValencianAutonomousRe- was an important malariavector and its capture gionofEasternSpain(Diptera:Culicidae:Anopheli- was common up to 1946 (Clavero & Romeo nae).—EuropeanMosquitoBulletin23:148–156. BuenoMarí,R.&JiménezPeydró,R.2010c:Situaciónac- Viamonte 1948). Since then it has not been re- tualenEspañayeco-epidemiologíadelasarbovirosis corded in Spain (Blázquez & De Zulueta 1980, transmitidaspormosquitosculícidos(Diptera:Culici- BuenoMarí&JiménezPeydró2010b). dae).—RevistaEspañoladeSaludPública84:249– Of concern is the expanding distribution of 263.[InSpanish.] Aedes albopictus (Skuse), the Asian tiger mos- BuenoMarí,R.,BernuésBañeresA.,ChordáOlmosF.A. &JiménezPeydró,R.2010:NuevosdatosdeUrano- quito. This species, potential vector of several taenia unguiculata Edwards, 1913 (Diptera: Culici- arboviruses such as Dengue, Yellow Fever or dae)paralaPenínsulaIbérica.—BoletíndelaSocie- Chikungunya among others (Bueno Marí & Ji- dadEntomológicaAragonesa46:613–614.[InSpa- ménezPeydró2010c),wasfirstrecordedinSpain nish.] in2004(Arandaetal.2006)andwasrecentlyde- BuenoMarí,R.&JiménezPeydró,R.2011:Classification ofSpanishmosquitoesinfunctionalgroups.—Jour- tectedsouthofourstudyarea(BuenoMaríetal. naloftheAmericanMosquitoControlAssociation27: 2009b). 1–7. Clavero,G.&RomeoViamonte,J.M.1948:Elpaludismo Acknowledgments.WearegratefultotheRegionalMinis- enlashuertasdeMurciayOrihuela.Ensayosdeapli- try of the Generalitat Valenciana (Conselleria de Medi cacióndelosinsecticidasmodernos,D.D.T.y666,en Ambient,Aigua,UrbanismeiHabitatge)forthegrantof laluchaantipalúdica.—RevistadeSanidadeHigiene theinsectscapturepermissionsintheprotectedenclaves Pública22:199–228.[InSpanish.] andtoProf.MarioSendra(DepartmentofStatisticsand Darsie,R.F.&SaminadouVoyadjoglou,A.1997:Keys OperationalResearchoftheUniversityofValencia)forthe fortheidentificationofthemosquitoesofGreece.— 198 BuenoMarí&Jiménez-Peydró (cid:127) ENTOMOL.FENNICAVol.22 JournaloftheAmericanMosquitoControlAssocia- PemolaDevi,N.&Jauhari,R.K.2007:Mosquitospecies tion13:247–254. associatedwithinsomewesternHimalayasphytoge- Dorvillé,L.F.M.1996:Mosquitoesasbioindicatorsoffo- ographic zones in the Garhwal region of India. — rest degradation in southeastern Brazil, a statistical JournalofInsectScience7:1–10. evaluationofpublisheddataintheliterature.—Stu- Reinert,J.F.2000:Newclassificationforthecomposite diesonNeotropicalFaunaandEnvironment31:68– genusAedes(Diptera:Culicidae:Aedini),elevationof 78. subgenusOchlerotatusto generic rank, reclassifica- EncinasGrandes,A.1982:Taxonomíaybiologíadelos tionoftheothersubgenera,andnotesoncertainsubge- mosquitosdeláreasalmantina(Diptera,Culicidae).— neraandspecies.—JournaloftheAmericanMosqui- Universidad de Salamanca, Salamanca. 434 pp. [In toControlAssociation16:175–188. Spanish.] RDevelopmentCoreTeam2005:R:alanguageandenvi- Eritja,R.,Aranda,C.,Padrós,J.,Goula,M.,Lucientes,J., ronmentforstatisticalcomputing.—Ed.RFounda- Escosa,R.,Marqués,E.&Cáceres,F.2000:Ananno- tionforStatisticalComputing;Vienna.[wwwdocu- tatedchecklistandbibliographyofthemosquitoesof ment]URLwww.R-project.org.(Sitevisitedon2Oc- Spain (Diptera: Culicidae). — European Mosquito tober,2010) Bulletin8:10–18. Rioux,J.A.1958:Lesculicidesdu“Midi”mediterranéen. Forattini, O. P., Kakitani, I., Massad, E. & Marucci, D. Etudesystematiqueetécologique.—Encyclopédie 1993:Studiesonmosquitoes(Diptera:Culicidae)and Entomologique.Ser.A.,XXXV,Paris.303pp. anthropicenvironment.3–Surveyofadultstagesat RomeoViamonte,J.M.1950:LosanofelinosdeEspanay thericeirrigationsystemandtheemergenceofAnop- delazonaespañoladelProtectoradodeMarruecos.Su helesalbitarsisinSouth-EastemBrazil.—Revistade relaciónconladifusióndelpaludismo.—Revistade SaúdePública27:313–325. SanidadeHigienePública24:213–295.[InSpanish.] GeneralitatValenciana-GVA(2003):Hábitatsprioritarios Schaffner,F.,Angel,G.,Geoffroy,B.,Hervy,J.O.&Rha- delaComunidadValenciana.—ConselleriadeTerri- eim,A.2001:ThemosquitoesofEurope/Lesmousti- toriiHabitatgedelaGeneralitatValenciana,Valencia. quesd’Europe[computerprogram].—Montpellier, 222pp.[InSpanish.] France:IRDÉditionsandEIDMéditerranée. Halffter,G.1998:Astrategyformeasuringlandscapebio- Schluter,D.&Ricklefs,R.E.1993:Speciesdiversityin diversity.—BiologyInternational36:3–17. ecologicalcommunities:historicalandgeographical Kindt,R.&Coe,R.2005:Treediversityanalysis:Amanu- perspectives. — The University of Chicago Press, al and software for common statistical methods for Chicago.414pp. ecologicalandbiodiversitystudies.—Ed.WorldAg- Service,M.W.1993:MosquitoEcology.FieldSampling roforestry Centre (ICRAF), Nairobi. [www docu- Methods.2ndedition.—ElsevierSciencePublishers, ment] URL http://www.worldagroforestry.org/tree- London.988pp. sandmarkets/tree_diversity_analysis.asp.(Sitevisited TorresCañamares,F.1979:Breverelacióncríticadelos on2October,2010) mosquitosespañoles.—RevistadeSanidadeHigiene Montes,J.2005:CulicidaefaunaofSerradaCantareira, Pública53:985–1002.[InSpanish.] SaoPaulo, Brazil. —RevistadeSaúdePública39: Whittaker,R.H.1972:Evolutionandmeasurementofspe- 578–584. ciesdiversity.—Taxon21:213–251. Moreno,C.2001:Métodosparamedirlabiodiversidad.— Zhong,H.,Yan,Z.,Jones,F.&Brock,C.2003:Ecological Ed.Cyted,Orcyt-Unesco&SEA,Zaragoza.86pp.[In analysisofmosquitolighttrapcollectionsfromWest Spanish.] Central Florida. — Environmental Entomology 32: Nuorteva,P.1963:Synanthropyofblowflies(Dipt.,Cal- 807–815. liphoridae)inFinland.—AnnalesEntomologiciFen- nici29:1–49.