ebook img

Dietary Enrichment with Fish Oil Prevents High Fat-Induced Metabolic Dysfunction in Skeletal ... PDF

19 Pages·2015·2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dietary Enrichment with Fish Oil Prevents High Fat-Induced Metabolic Dysfunction in Skeletal ...

RESEARCHARTICLE Dietary Enrichment with Fish Oil Prevents High Fat-Induced Metabolic Dysfunction in Skeletal Muscle in Mice LisaK.Philp*,LeonieK.Heilbronn,AlenaJanovska,GaryA.Wittert DisciplineofMedicine,UniversityofAdelaide,Adelaide,SouthAustralia,Australia * [email protected] Abstract a11111 Highsaturatedfat(HF-S)dietsincreaseintramyocellularlipid,aneffectamelioratedby omega-3fattyacidsinvitroandinvivo,thoughlittleisknownaboutsex-andmusclefiber type-specificeffects.Wecomparedeffectsofstandardchow,HF-S,and7.5%HF-Sre- placedwithfishoil(HF-FO)dietsonthemetabolicprofileandlipidmetabolismgeneand proteincontentinred(soleus)andwhite(extensordigitorumlongus)musclesofmaleand OPENACCESS femaleC57BL/6mice(n=9-12/group).WeightgainwassimilarinHF-S-andHF-FO-fed Citation:PhilpLK,HeilbronnLK,JanovskaA,Wittert groups.HF-Sfeedingincreasedmesentericfatmassandlipidmarker,OilRedO,inredand GA(2015)DietaryEnrichmentwithFishOilPrevents mixedmuscle;HF-FOincreasedinterscapularbrownfatmass.Comparedtochow,HF-S HighFat-InducedMetabolicDysfunctioninSkeletal andHF-FOincreasedexpressionofgenesregulatingtriacylglycerolsynthesisandfatty MuscleinMice.PLoSONE10(2):e0117494. doi:10.1371/journal.pone.0117494 acidtransport,HF-Ssuppressedgenesandproteinsregulatingfattyacidoxidation,where- asHF-FOincreasedoxidativegenes,proteinsandenzymesandlipolyticgenecontent, AcademicEditor:MariàAlemany,FacultyofBiology, SPAIN whilstsuppressinglipogenicgenes.IncomparisontoHF-S,HF-FOfurtherincreasedfat transporters,markersoffattyacidoxidationandmitochondrialcontent,andreducedlipo- Received:October7,2014 genicgenes.Nodiet-by-sexinteractionswereobserved.Neitherdietinfluencedfibertype Accepted:December24,2014 composition.However,someinteractionsbetweenmuscletypeanddietwereobserved. Published:February6,2015 HF-Sinducedchangesintriacylglycerolsynthesisandlipogenicgenesinred,butnotwhite, Copyright:©2015Philpetal.Thisisanopen muscle,andmitochondrialbiogenesisandoxidativegenesweresuppressedbyHF-Sand accessarticledistributedunderthetermsofthe increasedbyHF-FOinredmuscleonly.Inconclusion,HF-Sfeedingpromoteslipidstorage CreativeCommonsAttributionLicense,whichpermits inredmuscle,aneffectabrogatedbythefishoil,whichincreasesmediatorsoflipolysis,oxi- unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare dationandthermogenesiswhileinhibitinglipogenicgenes.Greaterstorageandsynthesis, credited. andloweroxidativegenesinred,butnotwhite,musclelikelycontributetolipidaccretionen- DataAvailabilityStatement:Allrelevantdataare counteredinredmuscle.Despiteseveralgender-dimorphicgenes,bothsexesexhibiteda withinthepaperanditsSupportingInformationfiles. similarHF-S-inducedmetabolicandgeneexpressionprofile;likewisefishoilwassimilarly Funding:ThisworkwasfundedbyanAustralian protectiveinbothsexes. Post-graduateAward(http://education.gov.au/ australian-postgraduate-awards)-LKP.Thefunders hadnoroleinstudydesign,datacollectionand analysis,decisiontopublish,orpreparationofthe manuscript. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 1/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Introduction Dietsrichinsaturatedfat(HF-S),particularlywhenconsumedadlibitum,increaseadiposity inrodents[1,2].Additionally,HF-Sdietsincreasetriacylglyceroldepositioninectopicstores, includingtheliverandskeletalmuscleinbothmice[3–5]andhumans[6–9].Wehaveprevi- ouslyreported[10]thatinvitroexposuretopalmitate,asaturatedfattyacid,increasestriacyl- glycerolcontentinratL6myotubes.Inhealthyleanhumans,acuteexposuretoaHF-Sdiet increasesfattyacidoxidation[11,12].Thisadaptiveincreaseisimpairedinobesehumans[11, 13,14]andhasbeenlinkedtoincreasedintramyocellulartriacylglycerolstorage[4,5,15,16], althoughincreasedfattyaciduptake[17,18]andreducedtriacylglycerolhydrolysis[19,20] mayalsobeinvolved. Dietarysupplementationwithfishoilhasmultiple,well-establishedhealthbenefits,includ- ingreducingcirculatingtriacylglycerolandananti-inflammatoryaction[21,22].Inmice,re- placing1.5%ofacornoilbasedhighfatdiet(35%lipid;n-6PUFA-rich)withdocosahexaenoic acid(DHA)derivative,α-ethylDHAethylester,reducedintramyocellulartriacylglycerolby morethanhalf[23]andlikewise,incorporating3.6%eicosapentaenoicacid(EPA)ethylester intoa45%highfatdietelicitedintramyocellulartriacylglycerolloweringeffects.Mechanistically severalpathwaysmaybeinvolved.Ahighfatdiet(35.5%energyfromfat)ofpredominantly fishoilincreasedmusclefattyacidtransporter,Fat/cd36,mRNAinmice,comparedtothose consuminganisocaloriclard-basedhighfatdiet[24].Supplementingacafeteriahighfatdiet (62%energyfromfat(45%saturatedfat,noEPAandDHA))withEPAethylester(1g/kg),re- ducedacetylCoAcarboxylaseβ(Acc-β)mRNAcontentinratmuscle,whichmaysimulta- neouslyresultinsuppressionoflipogenesisandenhancedβ-oxidationinmyocytes[25].While replacing15%offatinhighfatdiet(35.2%fat(mainlyn-6PUFA-richcornoil))withn-3 PUFAconcentrate(3.29:1DHA:EPA)inmicepromotedefficientβ-oxidationoffattyacids withinskeletalmusclemitochondria[26].Whethern-3PUFAsfromnaturalfishoilabrogate intramyocellularlipidaccumulationinaHF-Ssettingisunclearandthepathwaysinvolvedre- quireclarification.Additionally,thevastmajorityofpaststudieshaveexaminedonlytheeffect ofdietaryn-3PUFAsupplementationineitherwhiteglycolyticskeletalmuscles[24]ormuscles ofmixedfibertype[25–30]thatarereliantonglucoseorafuelmixtureastheirmainsubstrate [31].Redfibersareoxidativeandrelyheavilyonlipidsasfuel[31–33].Theextenttowhichthe additionofn-3PUFAstoaHF-Sdietmodifieslipidmetabolismintheseredfibersremainsto bedetermined,althoughincreasedCpt1bandUcp3mRNAhavebeenreportedinthemouseso- leusinresponsetoEPAethylesterenrichmentofahighfatdiet[34].Paststudieswerealsocon- ductedsolelyinmalerodentsandthuscannotanswerwhethertherearesex-relateddifferences inthisresponse.Especiallyasinrats[35,36],highfat-fedmalesarereportedtobelessefficient atpromotingadiposetissuedeposition,arelessproficientatamplifyingmuscleoxidativecapac- ityandinsteadexhibitgreaterhepatictriacylglycerolcontentandfattyacidoxidationrate, whencomparedtohighfat-fedfemales[36].Theaimofthisstudywasthereforetodetermine thedifferentialeffectsoffeedingasaturatedfat-richdiet(HF-S)oraHF-Sdietwith7.5%of fattyacidsreplacedwithn-3PUFAsfromfishoil(HF-FO)inmaleandfemalemiceonbody compositionandpathwaysofskeletalmusclelipidmetabolisminboth“white”fast-twitchgly- colyticandoxidative-glycolyticand“red”slow-twitchoxidativemuscles,byquantifyingthehis- tologicalchangesinmusclelipidcontentandoxidativecapacity(SDH,NADH-TR)andthe mRNAcontentofkeygenesinvolvedinfattyacidtransport(Fat/cd36,Fabp ,Fatp1,Fatp4),li- pm pogenesisandtriacylglycerolstorageandhydrolysis(Srebf1,Insig1,Dgat1,Scd1,Hsl),andfatty aciddisposal(Pdk4,Ampkα1,Ampkα2,Acc-β,Cpt1b,Ucp3,Pgc1α,Pparα)usingrealtime quantitativePCRandtheabundanceofkeyproteinsinvolvedinmitochondrialoxidationby Westernblotanalysis(PGC1α,PPARα,CPT1b,OXPHOSComplexI-V). PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 2/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice MaterialsandMethods EthicsStatement AllprocedureswereapprovedbytheUniversityofAdelaideandInstituteofMedicalandVet- erinaryScienceAnimalEthicsCommittees,andUniversityofAdelaideguidelinesfortheuse andcareoflaboratoryanimalswerefollowed(approvalnumber:M-027–2007).Allanimals wereprovidedwithenvironmentalenrichmentthroughoutthedietaryinterventionandall proceduresthereafterwereperformedunderisoflurane-inducedanaesthesiato minimisesuffering. Animalsanddiets Specificpathogen-free6-week-oldmaleandfemaleC57BL/6JmicewerepurchasedfromLabo- ratoryAnimalServices,UniversityofAdelaide(Adelaide,Australia).Micewerehousedinindi- vidualcagesinananimalholdingroomwithfixedphotoperiod(12:12hrlight/darkcycle)and temperature(24.5°C).Onarrival,miceunderwentanacclimatizationperiodof2wks,during whichtheywereprovidedstandardrodentchowdietandwateradlibitum.Followingtheaccli- matizationperiod,micewererandomlyassignedtooneofthreediets,fedeitherastandard chow((control(CON);AIN-93G),16.1MJ/kg,15.91%energyfromfat,25.08%energyfrom protein,58.48%energyfromcarbohydrate),highsaturatedfat((HF-S;SF07–066),21.8MJ/kg, 59.60%energyfromfat(richinsaturatedfat),18.53%energyfromprotein,21.20%energy fromcarbohydrate),orHF-Sfishoilenriched((HF-FO;SF07–067),21.8MJ/kg,59.60%energy fromfat(7.5%ofHF-Sreplacedwithn-3PUFAs(%asfed)),18.53%energyfromprotein, 21.27%energyfromcarbohydrate)diet.DietsweremanufacturedbySpecialtyFeedsPtyLtd (GlenForrest,Australia)andn-3PUFAsintheHF-FOdietwereprovidedasHiDHA25N tunaoil(26%DHA,6%EPA)(kindlydonatedbyNu-megaIngredientsPtyLtd(Nathan,Aus- tralia)).Bothhighfatdietswerestoredat-20°C,whilsttheHF-FOdietwasalsostoredinali- quotsundernitrogengastoavoidoxidation.Miceweremaintainedontheirrespectivedietsfor aperiodof11or14wks,seeExperimentalProtocolsandTissueCollection,duringwhichfood andwaterwereprovideddailyadlibitum. ExperimentalProtocolsandTissueCollection Cohort1:Miceweremaintainedontheirrespectivedietsfor14wks(±4d).Bodyweight(g) wasmeasuredthriceweeklyandatthetimepointsofarrival(6wks-of-age)andpost-mortem (20wks-of-age)(n=CON(male)=10,CON(female)=12,HF-S(male)=11,HF-S(female)= 11,HF-FO(male)=9,HF-FO(female)=11).Bodyweightuponarrival(Table1;P=0.16 (CONvs.HF-S),P=1.0(CONvs.HF-FO),P=0.99(HF-Svs.HF-FO)andduringtheacclima- tizationperiod(datanotshown;P=0.24(CONvs.HF-S),P=0.42(CONvs.HF-FO),P=1.0 (HF-Svs.HF-FO))wassimilarinalldietarygroups.Foodintakewasmeasureddaily,from whichcumulativeenergyintake(MJ)wascalculated. Following14wksdiet,whilstinthefed-state,miceunderwentnon-recoverysurgeryforthe excisionofskeletalmuscle.Surgerieswerescheduledandperformedtominimisetemporal variation.Anaesthesiawasinducedusingamixtureofoxygen(0.5L/min),nitrousoxide (0.5L/min)and2%isoflurane(Forthane,AbbottAustralasiaPtyLtd(Kurnell,Australia))and maintainedusing1.5%isoflurane,0.4L/minoxygenand0.4L/minnitrousoxide.Thewhole “white”extensordigitorumlongus(EDL)and“red”soleus(SOL)muscleswerethenrapidly dissected,snapfrozeninliquidnitrogenandstoredunderliquidnitrogenvapourphasestorage untilsubsequentanalysesofmRNAcontentandproteinabundance.Followingskeletalmuscle surgery,acardiacpuncturewasperformedandbloodwascollectedinMicrovetteCB300tubes PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 3/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Table1.Bodyweight-relatedandplasmabiochemicalparameters. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO StartWeight(g)† 22.0±0.6 22.5±0.2 22.6±0.3 17.9±0.2 18.9±0.3 18.3±0.3 S FinalWeight(g)† 28.0±0.8 31.1±0.7* 31.8±0.9* 21.9±0.3 26.0±0.8* 27.6±0.6* D,S WeightGain(g)† 6.05±0.8 8.63±0.6* 9.25±0.9* 3.99±0.3 7.14±0.7* 9.25±0.6* D,S EnergyIntake(MJ) 4.36±0.1 5.45±0.1§ 5.08±0.2§ 3.94±0.1 5.50±0.2§ 5.49±0.1§ DxS PooledAT(g) 2.48±0.2 3.00±0.3* 3.19±0.5* 1.64±0.1 2.64±0.4* 2.92±0.3* D SubcutaneousAT(mg/g) 35.0±2.4 40.5±4.8 41.5±6.3 34.0±2.1 44.9±5.4 47.3±6.0 N/S MesentericAT(mg/g) 20.0±1.0 18.7±0.6 15.6±1.1# 17.9±0.6 21.7±2.2 18.4±0.8# D PerirenalAT†(mg/g) 8.2±0.7 9.3±1.1 11.5±2.0* 5.9±0.4 7.8±1.0 9.9±1.0* D,S BrownAT(mg/g) 4.7±0.4 3.8±0.3 5.2±0.5# 4.4±0.4 3.8±0.2 5.5±0.4# D PerigonadalAT(mg/g) 20.0±1.3 22.3±2.4 23.8±4.0 13.4±1.4 18.6±2.3 22.4±2.9* D PlasmaGlucose(mM)† 8.04±0.6 7.98±0.5 6.84±0.7 7.34±0.6 5.96±0.5 6.64±0.5 S PlasmaInsulin(pM) 63.8±12 109.7±29 59.7±14 71.9±14 114.2±26 70.7±18 N/S PlasmaTG(mM) 0.83±0.1 0.62±0.0 0.53±0.1*# 0.72±0.1 0.79±0.1 0.55±0.1*# D Measuredinmaleandfemalemicefedcontrol(CON),highsaturatedfat(HF-S)andhighfatfishoilenriched(HF-FO)dietsfor14wks(Cohort1). Resultsaremean±SEMof9–12animalspergroup.Adiposetissue,AT;TG,triacylglycerol. Statistics:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofsex(S): †P(cid:1)0.05malevsfemale.Diet*sexinteraction(DxS): §P(cid:1)0.05,comparedtoCONofsamegender.N/S,notsignificant. doi:10.1371/journal.pone.0117494.t001 treatedwithEDTAdipotassiumsalt(Sarstedt(Nümbrecht,Europe)).Post-mortem,adipose tissuefromthepooledposteriorandanteriorsubcutaneous(dorso-lumbar,inguinal,gluteal, whiteinterscapular,subscapular,axillo-toracicandsuperficialcervicaldepots);visceralmesen- teric;pooledperirenalandretroperitoneal;pooledbrowndeepcervicalandinterscapular;and perigonadal(periovariac,females;epididymal,males)depotswasdissected,snapfrozeninliq- uidnitrogenandevaluatedforweight.Adiposetissuedepotweightsareexpressedrelativeto bodyweight,toallowcomparisonacrosssexes. Cohort2:Miceweremaintainedontheirrespectivedietsfor11wks(±7d).Following11 wksdiet,whilstinthefed-state,miceunderwentnon-recoverysurgeryfortheexcisionofskele- talmuscle,withanaesthesiainducedandmaintainedasdescribedabove.ThewholeEDL(un- dividedfromthetibialismuscle),andsoleus(undividedfromthegastrocnemiusandplantaris muscles)werethenrapidlydissected,followedbyexcisionofthewholeundividedquadriceps muscles.MusclegroupswereembeddedatrestingtensioninTissue-TekOCT(SakuraFinetek CoLtd(Tokyo,Japan))andgentlyfrozen.OCT-embeddedmuscleswerestoredunderliquid nitrogenvaporphasestorageuntilsubsequenthistologicalanalysesofmusclelipid,fibertype compositionandoxidativecapacity. PlasmaBiochemistry Plasmaglucoseandtriacylglycerol(mM)concentrationsweremeasuredinduplicateusing Gluco-quantGlucose/HKandTGGPO-PAPkits(RocheDiagnostics(Mannheim,Germany)), respectively,ontheCOBASBioautomatedanalysissystem(RocheDiagnosticsAustraliaPty Ltd(CastleHill,Australia)).Plasmainsulinconcentrations(pM)weremeasuredbyDRG PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 4/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice UltrasensitiveMouseInsulinELISA(DRGInstruments(Marburg,Germany))asper manufacturer’sinstructions. mRNAExpressionAnalysesusingtheGenomeLabGeXPGenetic AnalysisSystem TotalRNAfromwholeEDLandsoleusmuscleswasisolatedusingTRIzolreagent(Invitrogen AustraliaPtyLtd(MountWaverley,Australia)).RNAqualityandconcentrationwereevaluat- ed(NanoDrop1000Spectrophotometer,ThermoScientificInc(Wilmington,USA)).RNAwas treatedusingDNaseI(InvitrogenAustraliaPtyLtd).cDNAwasgeneratedbyreversetran- scriptionaccordingtomanufacturer’sinstructions(GenomeLabGeXPGeneticAnalysisSys- tem,BeckmanCoulterInc),resultingincDNAofgene-specificsequenceswithaflanking universalsequence.Forwardandreverseprimersweredesignedtoamplifyasectionofthepro- teincodingsequenceandtobepositionedindifferentexonsasdeterminedbyEntrezNucleo- tide(NationalCenterforBiotechnologyInformation(Bethesda,USA))andEnsembl (EuropeanBioinformaticsInstitute/WellcomeTrustSangerInstitute(Cambridge,United Kingdom)),respectively.PrimersweredesignedusingGenomeLabGeXPeXpressProfilersoft- ware(ver.10.0BeckmanCoulterInc(Fullerton,USA))togenerateanamplifiedproductwitha genefragmentlengthbetween137–356nucleotidesandseparationsizeofatleast6nucleotides. FinallyprimersequencesweresubmittedtoBLAST(BasicLocalAlignmentSearchTool,Na- tionalCenterforBiotechnologyInformation(Bethesda,USA)).Auniversalsequencewasthen addedtobothforwardandreversedesignedprimersequences,generatingchimericprimers. Resultantforwardandreverseprimers(GeneWorksPtyLtd(Hindmarsh,Australia))arelisted intableform(SupportingInformation—S1Table).Primerswereoptimizedinsingletandmul- tiplexreactions,accordingtomanufacturer’sinstructions(GenomeLabGeXPGeneticAnalysis System,BeckmanCoulterInc).MultiplexPCRwasthenperformedontheEppendorfMaster- cyclerGradient(EppendorfSouthPacificPtyLtd(NorthRyde,Australia)).Negativecontrols (notemplate,noreversetranscriptase)wereruninparallel.Fluorescently-labeledPCRprod- uctswereseparated,detected,quantifiedandanalyzedinduplicateusingtheGenomeLab GeXPGeneticAnalysissystemandGenomeLabGeXPeXpressProfilersoftware.Output mRNAcontentswerethennormalizedtotheaveragemRNAcontentof3housekeepinggenes, TATA-bindingprotein,RNAPolymerase2candlargeribosomalproteinP0. ProteincontentanalysesbyWesternBlot WholeEDLandsoleusmuscleswereweighedandhomogenisedinice-coldlysisbufferasde- scribedpreviously[37]andproteinconcentrationdeterminedbybicinchoninicacidprotein assay(PierceBiotechnology(Rockford,USA)).FormeasuringtheabundanceofPPARα,oxi- dativephosphorylation(OXPHOS)complexesI-V,peroxisomeproliferativeactivatedreceptor γcoactivator1α(PGC1α),CPT1bandβ-tubulinproteins,16–20μgofmuscleproteinwassub- jectedtoSDS-PAGEusingprecast10%Bis-Trisgelsor4–12%Bis-Trisgels(Bio-RadLaborato- riesPtyLtd(Gladesville,Australia))andtransferredtoPVDFmembranes.Membraneswere incubatedovernightinprimaryantibody;PPARα(Abcam(Cambridge,UK)),1:500;OXPHOS proteins(MitoSciences(Eugene,USA)),1:250;PGC1α(Abcam),1:1000;CPT1b(AlphaDiag- nosticInternationalInc(SanAntonio,USA)),1:1000;andβ-Tubulin(CellSignalingTechnolo- gy(Danvers,USA)),1:2000.Boundprimaryantibodiesweredetectedwithsheepanti-rabbit (1:2500,ChemiconInternational(Billerica,USA))orgoatanti-mousealkaline-phosphatase linkedantibody(1:2000,Millipore(Billerica,USA)).Membranesweredevelopedwithchemi- fluoresencesubstrate(ECF),scannedbyTyphoonImager(GEHealthcareBio-Sciences(Rydal- mere,Australia))andwerequantifiedusingImageQuantsoftware(MolecularDynamics). PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 5/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice MuscleHistology OCT-embeddedmusclegroups(theEDLandtibialisgroup,andthesoleus,gastrocnemiusand plantarisgroup,andthequadricepsmusclesgroup)werecutto4,9or10μmthickcross-sec- tionsat-20°C.Sectionswerestainedwithhaematoxylinandeosintoconfirmnormalcellular morphology(datanotshown)orwithOilRedO,amarkerofintramyocellularlipidcontent. Serialsectionswerestainedformyofibrillarmyosinadenosinetriphosphatase(mATPase),fol- lowingalkaline(pH10.4)andacidic(pH4.1,pH4.3)preincubations,toevaluatemusclefiber type[38].Sectionswerestainedforsuccinicdehydrogenase(SDH)andNADHtetrazoliumre- ductase(NADH-TR)toconfirmmusclefibertypeandevaluateoxidativecapacity.Following allstaining,slideswerescannedusingtheNanoZoomerDigitalPathologyscanner(Hamama- tsuPhotonicsK.K.(HamamatsuCity,Japan)).ThesoleusandEDLmuscleswereanalyzedin duplicatetodeterminemusclefibertypeandoxidativecapacityinpredominantlyredand whitemuscles,respectively,withthesame75musclefibersineachscannedimageassessedfor allstains.Imageswerescoredwhilstblindedtodietarygroupandsex. TheactivityofmATPasewasjudgedonasubjectivebasisbyoneobserverandmusclefibers weregivenascorefrom1–5basedontheintensityofstaining(1=light,2=light-moderate,3 =moderate,4=moderate-dark,5=dark).Adefinedschemewasusedtoclassifyfibertype, basedonscoresgiventomusclefibersstainedformATPase[38].Fibertypecomposition(%) wascalculatedastheproportionofeachfibertyperelativetothetotalnumberoffibersscored. SDHandNADH-TRstainingintensitywereassessedbymeanpixeldensityusingImageJ software(ver.1.42q,NationalInstituteofHealth(Bethesda,USA))fromgrayscaleimagesman- uallytracedatcellperimeters.ThesamefibersusedtoassesstheactivityofbothSDHand NADH-TRwerealsousedtodeterminemusclefibertypebymATPasestaining,allowingclas- sificationofoxidativeactivityrespectivetofibertype.Cellareaofeachmusclefibertypewas alsoassessed.Theareaofeachfibertypewascalculatedrelativetothetotalareameasured,pro- vidingtherelativeareaoccupiedbyeachmusclefibertypewithintheEDLandsoleusmuscles. Resultsarepresentedasthemeancross-sectionalcellareaofclassifiedfibersandthe%areaoc- cupiedbyeachmusclefibertype. StatisticalAnalysis Alldataarepresentedasmean±SEM.Two-wayANOVA,withpairwisecomparisons(Bonfer- ronipost-hoc),wasusedtodeterminetheeffectofdiet(CON,HF-S,HF-FO),muscle(EDL,so- leus),sex(male,female)andtheirinteractiononparameters.InCohort2analyses,astherewas nosignificantinteractionofsexanddiet,toenhancestatisticalpower,datafrommale(n=3 pergroup)andfemale(n=2–3pergroup)micewerecombined.One-wayANOVAs,with Bonferronipost-hocanalysis,werethereforeusedtodeterminetheeffectofdietintheEDL andsoleusmusclesonmusclefibertype-specificparameters.Statisticswereperformedusing StatisticalPackageforSocialScientistsver.17.0.0(SPSSInc(Chicago,USA)).P<0.05wascon- sideredstatisticallysignificant. Results Effectofdietaryfatcompositiononadiposetissuedistributionand plasmabiochemistry(Table1) ComparedtoCON,HF-S-andHF-FO-fedmicegainedmoreweight(effectofdiet:P(cid:1)0.001), buttherewerenodifferencesbetweenthetwohighfatdietgroups.Irrespectiveofdiet,males gainedmoreweightthanfemales(effectofsex:P(cid:1)0.05).ComparedtoCON,cumulativeener- gyintakewashigherinthetwohighfatdietgroups(effectofdiet:P<0.005),buttherewasno PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 6/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice differencebetweenhighfatdietsandnoeffectofsex.ComparedtoCON,HF-SandHF-FOin- creasedpooledadiposetissuemasssimilarly,inbothsexes(effectofdiet:P(cid:1)0.05,P(cid:1)0.01). However,fatstorageindistinctadiposetissuedepotswasaffectedbydietaryfattyacidcompo- sition.ComparedtoCON,HF-FOincreasedpooledperirenalandretroperitonealadiposetis- sue(effectofdiet:P(cid:1)0.005),irrespectiveofsex,andgonadalperiovariacadiposetissue(effect ofdiet:P(cid:1)0.05)infemalemice.Inmales,gonadaldepot,epididymaladiposetissue,wasun- changedbydiet;similarlysubcutaneousfatmasswasnotdiet-dependent.ComparedtoHF-S, HF-FOdecreasedmesentericadiposetissue(effectofdiet:P(cid:1)0.05)andincreasedbrownadi- posetissue(effectofdiet:P(cid:1)0.05),inbothsexes.Otherthanhigherpooledperirenalandretro- peritonealadiposetissueinmales(effectofsex:P(cid:1)0.05),theadiposetissuedepotsmeasured werenotsexuallydimorphic.ComparedtoCONandHF-S,HF-FOloweredplasmatriacylgly- cerol(effectofdiet:P(cid:1)0.005,P(cid:1)0.05),irrespectiveofsex.Neitherhighfatdietinfluencedplas- maglucosenorinsulinconcentrations,irrespectiveofsex.Irrespectiveofdiet,glucoselevels werehigherinmalesthanfemales(effectofsex:P(cid:1)0.05). Effectofdietaryfatcompositiononskeletalmusclelipidcontentinwhole muscleandmusclefibertypedistribution(Fig.1) IncreasedOilRedOstaining,amarkerofintramyocellularlipid,wasapparentinsoleus(pre- dominatelyred)andquadriceps(mixedfibertype)ofHF-S,butnotCONandHF-FO,mice (Fig.1A).NeitherhighfatdietinfluencedOilRedOstainingintheEDL(predominantlywhite muscle).PercentagemusclefibertypecompositionintheEDLandsoleusmuscleswasnot influencedbydiet(Fig.1B),norwasthecross-sectionalareaofeachmusclefibertype(datanot shown). EffectofdietaryfatcompositiononmusclefattyacidtransportermRNA content(Table2) ComparedtoCON,bothhighfatdietsincreasedFat/cd36andFatp1mRNA(effectofdiet: Fat/Cd36:P(cid:1)0.001;Fatp1:HF-SP(cid:1)0.005;HF-FOP(cid:1)0.001),butHF-FOaloneincreasedFatp4 mRNA(effectofdiet:P(cid:1)0.02),irrespectiveofmuscletype.ComparedtoHF-S,HF-FOin- creasedFat/Cd36mRNA(effectofdiet:P(cid:1)0.001),irrespectiveofmuscletype.Allfattyacid transportersexhibitedgreatermRNAcontentinthesoleusmuscle(effectofmusclefibretype: P(cid:1)0.001).ExceptforhigherFatp1mRNAinmalescomparedtofemalesintheEDLonly (muscle(cid:3)sexinteraction:P(cid:1)0.001),therewerenoothersexdifferencesinfattyacidtransporter mRNAcontent. EffectofdietaryfatcompositiononthemRNAcontentofgenes influencingfattyacidstorageandlipogenesis(Table3) ComparedtoCON,HF-SincreasedSrebf1andInsig1mRNAs(effectofdiet:P(cid:1)0.02),irrespec- tiveofmusclefibertype,andincreasedDgat1anddecreasedScd1mRNAinthesoleusmuscle alone(diet(cid:3)muscleinteraction:P(cid:1)0.05;P(cid:1)0.005).ComparedtoCON,HF-FOincreased Dgat1mRNAinbothmuscles(diet(cid:3)muscleinteraction:P(cid:1)0.001).ComparedtobothCON andHF-S,HF-FOdecreasedScd1mRNAinbothmuscles(diet(cid:3)muscleinteraction:P(cid:1)0.02) andincreasedHslmRNA(effectofdiet:P(cid:1)0.001,P(cid:1)0.05),irrespectiveoffibertype.Com- paredtoHF-Salone,HF-FOloweredthemRNAcontentofInsig1,irrespectiveofmuscletype (effectofdiet:P(cid:1)0.001)andincreasedDgat1mRNAinthesoleusmuscle(diet(cid:3)muscleinterac- tion:P(cid:1)0.001). PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 7/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Fig1.MuscleLipidContentandFiberTypeComposition.(A)OilRedOstaining,amarkerofintramyocellularlipid,ofthewholeextensordigitorum longus(EDL),soleus(SOL)andquadriceps(rectusfemoris(RECTFEM),vastuslateralis(VASTLAT),vastusintermedius(VASTINT)andvastusmedialis (VASTMED))musclesand(B)musclefibertypecomposition(%)oftheEDLandSOLmusclesofmicefedacontrol(CON),highsaturatedfat(HF-S)orhigh fatfishoilenriched(HF-FO)dietfor11wks(Cohort2).Scalebarsrepresent100μm. doi:10.1371/journal.pone.0117494.g001 PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 8/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Table2.FattyacidtransportermRNAcontent. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO Fat/Cd36 EDL 100±6 116±8* 133±5*# 95±7 105±5* 137±7*# D,M SOL+ 100±3 121±4* 146±7*# 94±5 115±6* 139±7*# Fabp EDL 100±3 107±4 100±3 106±8 98±4 107±5 M pm SOL+ 100±3 96±2 110±5 101±6 100±7 113±8 Fatp1 EDL‡ 100±8 137±8* 145±9* 81±10 102±7* 113±13* D,MxS SOL+ 100±6 114±8* 129±6* 93±9 112±12* 141±9* Fatp4 EDL 100±6 99±9 119±13* 107±12 93±7 108±8* D,M SOL+ 100±5 128±10 150±6* 117±12 142±20 142±14* Fattyacidtranslocase(Fat/Cd36),Fattyacidbindingprotein(Fabp )andFattyacidtransportproteins1(Fatp1)and4(Fatp4)inextensordigitorum pm longus(EDL)andsoleus(SOL)musclesofmaleandfemalemicefedcontrol(CON),highsaturatedfat(HF-S)orhighfatfishoilenriched(HF-FO)diets for14wks(Cohort1). mRNAcontentsareexpressedasapercentageofthevalueofmaleanimalsunderCONdiet.Resultsaremean±SEMof9–12animalspergroup. Statistics:Two-wayANOVA:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofmuscletype(M): +P(cid:1)0.05EDLvsSOL.Muscle*sexinteraction(MxS): ‡P(cid:1)0.05,malevsfemale(EDL). doi:10.1371/journal.pone.0117494.t002 Table3.Lipogenesis,triacylglcerolsynthesisandstoragegenesmRNAcontent. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO Srebf1 EDL† 100±5 143±10* 104±11 78±8 103±8* 104±9 D,MxS SOL 100±10+ 99±11*+ 92±16+ 90±11 108±13* 141±27 Insig1 EDL 100±8 128±9* 89±9# 109±15 97±5* 81±5# D SOL 100±8 147±10* 104±9# 112±12 148±18* 107±16# Dgat1‡ EDL 100±15 167±23 197±41* 113±19 178±29 209±22* S,DxM SOL 100±15 162±17*^ 224±39*#^ 117±16 197±34*^ 300±33*#^ Scd1 EDL 100±8 86±8 56±3*# 109±17 77±4 84±7*# DxMMxS SOL† 100±11^ 84±6*^ 32±2*# 149±13^ 110±19*^ 40±5*# Hsl EDL 100±7 128±8 142±14*# 103±12 117±12 135±11*# D,M SOL+ 100±7 117±7 144±13*# 107±12 124±14 150±13*# Sterolregulatoryelementbindingtranscriptionfactor1(Srebf1),insulininducedgene1(Insig1),diacylglycerolacyltransferase1(Dgat1),stearoyl- CoenzymeAdesaturase1(Scd1)andhormonesensitivelipase(Hsl)inextensordigitorumlongus(EDL)andsoleus(SOL)musclesofmaleandfemale micefedcontrol(CON),highsaturatedfat(HF-S)orhighfatfishoilenriched(HF-FO)dietsfor14wks(Cohort1). mRNAcontentsareexpressedasapercentageofthevalueofmaleanimalsunderCONdiet.Resultsaremean±SEMof9–12animalspergroup. Statistics:Two-wayANOVA:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofmuscletype(M): +P(cid:1)0.05EDLvsSOL.Effectofsex(S): ‡P(cid:1)0.05,malevsfemale.Muscle*sexinteraction(MxS): †P(cid:1)0.05,malevsfemale(ofsamemuscle).Diet*muscle(DxM): ^P(cid:1)0.05,EDLvsSOL(ofsamediet). doi:10.1371/journal.pone.0117494.t003 PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 9/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Table4.FattyAcidUtilisationGenemRNAContent. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO Pdk4 EDL 100±18 167±13* 206±25* 131±27 160±20* 192±19* D,M SOL+ 100±14 176±5* 234±13* 118±20 204±28* 241±24* Ampk1 EDL 100±7 97±8 101±8 107±12 97±6 128±11 M SOL+ 100±7 116±7 118±5 122±8 111±6 110±6 Ampk2 EDL† 100±5 106±3* 91±2# 85±5 94±29* 85±7# DMxS SOL+ 100±3 103±4* 93±3# 95±5 106±9* 92±5# Acc- EDL 100±7 110±9 111±10 140±40 104±6 104±12 M SOL+ 100±8 122±7 139±6 134±28 147±33 154±27 Cpt1b‡ EDL 100±6 94±6 115±4*# 65±5 88±3 104±10*# DxMS SOL+ 100±4 111±5 146±4*# 85±4 89±10 116±9*# Pgc1‡ EDL 100±10 88±6 97±5 78±6 79±9 94±13 DxMS SOL 100±11^ 68±9* 185±33*#^ 87±10^ 44±7* 144±16*#^ Ppar EDL 100±5 84±6* 90±6# 105±15 92±11* 95±12# D,M SOL+ 100±9 78±7* 102±7# 104±10 87±6* 100±8# Ucp3 EDL 100±15 116±7 163±18* 78±14 105±12* 136±13* DxM SOL 100±19^ 196±16 283±25* 111±27^ 248±34* 255±24* Pyruvatedehydrogenasekinase4(Pdk4),AMP-activatedproteinkinasecatalyticsubunitsα1(Ampkα1)andα2(Ampkα2),acetyl-CoAcarboxylase- (Acc-),carnitinepalmitoyltransferase1b(Cpt1b),peroxisomeproliferativeactivatedreceptorcoactivator1(Pgc1),peroxisomeproliferatoractivator receptorα(Pparα)anduncouplingprotein3(Ucp3)inextensordigitorumlongus(EDL)andsoleus(SOL)musclesofmaleandfemalemicefedcontrol (CON),highsaturatedfat(HF-S)orhighfatfishoilenriched(HF-FO)dietsfor14wks(Cohort1). mRNAcontentsareexpressedasapercentageofthevalueofmaleanimalsunderCONdiet.Resultsaremean±SEMof9–12animalspergroup. Statistics:Two-wayANOVA:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofmuscletype(M): +P(cid:1)0.05EDLvsSOL.Effectofsex(S): ‡P(cid:1)0.05,malevsfemale.Muscle*sexinteraction(MxS): †P(cid:1)0.05,malevsfemale(ofsamemuscle).Diet*muscle(DxM): ^P(cid:1)0.05,EDLvsSOL(ofsamediet). doi:10.1371/journal.pone.0117494.t004 mRNAcontentsofgenesinvolvedinlipogenesis,lipolysisandtriacylglycerolmetabolism weremostlyhigherinthesoleusthantheEDL,butthiswassex-anddiet-dependent.Srebf1 (malemice),Hsl(irrespectiveofdietorsex),Dgat1(HF-S,HF-FO(diet(cid:3)sex)andScd1(CON, HF-S(diet(cid:3)muscle),maleandfemale(sex(cid:3)muscle))exhibitedgreatermRNAinsoleuscom- paredtoEDLmuscle.Sex-dependenteffectswereobservedforSrebf1(inEDL)whichexhibited greatermRNAinmales,andScd1(insoleus)andDgat1(irrespectiveofdietormuscle)which exhibitedgreatermRNAinfemales. EffectofdietaryfatcompositiononfattyacidoxidationgenemRNA content(Table4) ComparedtoCON,HF-SdecreasedPgc1αmRNAinthesoleusmuscle(diet(cid:3)muscleinterac- tion:P(cid:1)0.001)andPparαmRNAinbothmuscles(effectofdietP(cid:1)0.05)andincreased Ampkα2mRNAirrespectiveofmusclefibertype(effectofdietP(cid:1)0.05).ComparedtoCON, HF-FOincreasedCpt1b,Ucp3,Pgc1αandPdk4mRNAinbothmuscles(diet(cid:3)muscleinterac- tion:P(cid:1)0.05;P(cid:1)0.001;P(cid:1)0.001;andeffectofdiet:P(cid:1)0.001).ComparedtoHF-S,HF-FO PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 10/19

Description:
placed with fish oil (HF-FO) diets on the metabolic profile and lipid metabolism gene and protein content in red fish oil increased muscle fatty acid transporter, Fat/cd36, mRNA in mice, compared to those consuming an isocaloric .. tsu Photonics K. K. (Hamamatsu City, Japan)). The soleus and EDL
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.