RESEARCHARTICLE Dietary Enrichment with Fish Oil Prevents High Fat-Induced Metabolic Dysfunction in Skeletal Muscle in Mice LisaK.Philp*,LeonieK.Heilbronn,AlenaJanovska,GaryA.Wittert DisciplineofMedicine,UniversityofAdelaide,Adelaide,SouthAustralia,Australia * [email protected] Abstract a11111 Highsaturatedfat(HF-S)dietsincreaseintramyocellularlipid,aneffectamelioratedby omega-3fattyacidsinvitroandinvivo,thoughlittleisknownaboutsex-andmusclefiber type-specificeffects.Wecomparedeffectsofstandardchow,HF-S,and7.5%HF-Sre- placedwithfishoil(HF-FO)dietsonthemetabolicprofileandlipidmetabolismgeneand proteincontentinred(soleus)andwhite(extensordigitorumlongus)musclesofmaleand OPENACCESS femaleC57BL/6mice(n=9-12/group).WeightgainwassimilarinHF-S-andHF-FO-fed Citation:PhilpLK,HeilbronnLK,JanovskaA,Wittert groups.HF-Sfeedingincreasedmesentericfatmassandlipidmarker,OilRedO,inredand GA(2015)DietaryEnrichmentwithFishOilPrevents mixedmuscle;HF-FOincreasedinterscapularbrownfatmass.Comparedtochow,HF-S HighFat-InducedMetabolicDysfunctioninSkeletal andHF-FOincreasedexpressionofgenesregulatingtriacylglycerolsynthesisandfatty MuscleinMice.PLoSONE10(2):e0117494. doi:10.1371/journal.pone.0117494 acidtransport,HF-Ssuppressedgenesandproteinsregulatingfattyacidoxidation,where- asHF-FOincreasedoxidativegenes,proteinsandenzymesandlipolyticgenecontent, AcademicEditor:MariàAlemany,FacultyofBiology, SPAIN whilstsuppressinglipogenicgenes.IncomparisontoHF-S,HF-FOfurtherincreasedfat transporters,markersoffattyacidoxidationandmitochondrialcontent,andreducedlipo- Received:October7,2014 genicgenes.Nodiet-by-sexinteractionswereobserved.Neitherdietinfluencedfibertype Accepted:December24,2014 composition.However,someinteractionsbetweenmuscletypeanddietwereobserved. Published:February6,2015 HF-Sinducedchangesintriacylglycerolsynthesisandlipogenicgenesinred,butnotwhite, Copyright:©2015Philpetal.Thisisanopen muscle,andmitochondrialbiogenesisandoxidativegenesweresuppressedbyHF-Sand accessarticledistributedunderthetermsofthe increasedbyHF-FOinredmuscleonly.Inconclusion,HF-Sfeedingpromoteslipidstorage CreativeCommonsAttributionLicense,whichpermits inredmuscle,aneffectabrogatedbythefishoil,whichincreasesmediatorsoflipolysis,oxi- unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare dationandthermogenesiswhileinhibitinglipogenicgenes.Greaterstorageandsynthesis, credited. andloweroxidativegenesinred,butnotwhite,musclelikelycontributetolipidaccretionen- DataAvailabilityStatement:Allrelevantdataare counteredinredmuscle.Despiteseveralgender-dimorphicgenes,bothsexesexhibiteda withinthepaperanditsSupportingInformationfiles. similarHF-S-inducedmetabolicandgeneexpressionprofile;likewisefishoilwassimilarly Funding:ThisworkwasfundedbyanAustralian protectiveinbothsexes. Post-graduateAward(http://education.gov.au/ australian-postgraduate-awards)-LKP.Thefunders hadnoroleinstudydesign,datacollectionand analysis,decisiontopublish,orpreparationofthe manuscript. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 1/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Introduction Dietsrichinsaturatedfat(HF-S),particularlywhenconsumedadlibitum,increaseadiposity inrodents[1,2].Additionally,HF-Sdietsincreasetriacylglyceroldepositioninectopicstores, includingtheliverandskeletalmuscleinbothmice[3–5]andhumans[6–9].Wehaveprevi- ouslyreported[10]thatinvitroexposuretopalmitate,asaturatedfattyacid,increasestriacyl- glycerolcontentinratL6myotubes.Inhealthyleanhumans,acuteexposuretoaHF-Sdiet increasesfattyacidoxidation[11,12].Thisadaptiveincreaseisimpairedinobesehumans[11, 13,14]andhasbeenlinkedtoincreasedintramyocellulartriacylglycerolstorage[4,5,15,16], althoughincreasedfattyaciduptake[17,18]andreducedtriacylglycerolhydrolysis[19,20] mayalsobeinvolved. Dietarysupplementationwithfishoilhasmultiple,well-establishedhealthbenefits,includ- ingreducingcirculatingtriacylglycerolandananti-inflammatoryaction[21,22].Inmice,re- placing1.5%ofacornoilbasedhighfatdiet(35%lipid;n-6PUFA-rich)withdocosahexaenoic acid(DHA)derivative,α-ethylDHAethylester,reducedintramyocellulartriacylglycerolby morethanhalf[23]andlikewise,incorporating3.6%eicosapentaenoicacid(EPA)ethylester intoa45%highfatdietelicitedintramyocellulartriacylglycerolloweringeffects.Mechanistically severalpathwaysmaybeinvolved.Ahighfatdiet(35.5%energyfromfat)ofpredominantly fishoilincreasedmusclefattyacidtransporter,Fat/cd36,mRNAinmice,comparedtothose consuminganisocaloriclard-basedhighfatdiet[24].Supplementingacafeteriahighfatdiet (62%energyfromfat(45%saturatedfat,noEPAandDHA))withEPAethylester(1g/kg),re- ducedacetylCoAcarboxylaseβ(Acc-β)mRNAcontentinratmuscle,whichmaysimulta- neouslyresultinsuppressionoflipogenesisandenhancedβ-oxidationinmyocytes[25].While replacing15%offatinhighfatdiet(35.2%fat(mainlyn-6PUFA-richcornoil))withn-3 PUFAconcentrate(3.29:1DHA:EPA)inmicepromotedefficientβ-oxidationoffattyacids withinskeletalmusclemitochondria[26].Whethern-3PUFAsfromnaturalfishoilabrogate intramyocellularlipidaccumulationinaHF-Ssettingisunclearandthepathwaysinvolvedre- quireclarification.Additionally,thevastmajorityofpaststudieshaveexaminedonlytheeffect ofdietaryn-3PUFAsupplementationineitherwhiteglycolyticskeletalmuscles[24]ormuscles ofmixedfibertype[25–30]thatarereliantonglucoseorafuelmixtureastheirmainsubstrate [31].Redfibersareoxidativeandrelyheavilyonlipidsasfuel[31–33].Theextenttowhichthe additionofn-3PUFAstoaHF-Sdietmodifieslipidmetabolismintheseredfibersremainsto bedetermined,althoughincreasedCpt1bandUcp3mRNAhavebeenreportedinthemouseso- leusinresponsetoEPAethylesterenrichmentofahighfatdiet[34].Paststudieswerealsocon- ductedsolelyinmalerodentsandthuscannotanswerwhethertherearesex-relateddifferences inthisresponse.Especiallyasinrats[35,36],highfat-fedmalesarereportedtobelessefficient atpromotingadiposetissuedeposition,arelessproficientatamplifyingmuscleoxidativecapac- ityandinsteadexhibitgreaterhepatictriacylglycerolcontentandfattyacidoxidationrate, whencomparedtohighfat-fedfemales[36].Theaimofthisstudywasthereforetodetermine thedifferentialeffectsoffeedingasaturatedfat-richdiet(HF-S)oraHF-Sdietwith7.5%of fattyacidsreplacedwithn-3PUFAsfromfishoil(HF-FO)inmaleandfemalemiceonbody compositionandpathwaysofskeletalmusclelipidmetabolisminboth“white”fast-twitchgly- colyticandoxidative-glycolyticand“red”slow-twitchoxidativemuscles,byquantifyingthehis- tologicalchangesinmusclelipidcontentandoxidativecapacity(SDH,NADH-TR)andthe mRNAcontentofkeygenesinvolvedinfattyacidtransport(Fat/cd36,Fabp ,Fatp1,Fatp4),li- pm pogenesisandtriacylglycerolstorageandhydrolysis(Srebf1,Insig1,Dgat1,Scd1,Hsl),andfatty aciddisposal(Pdk4,Ampkα1,Ampkα2,Acc-β,Cpt1b,Ucp3,Pgc1α,Pparα)usingrealtime quantitativePCRandtheabundanceofkeyproteinsinvolvedinmitochondrialoxidationby Westernblotanalysis(PGC1α,PPARα,CPT1b,OXPHOSComplexI-V). PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 2/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice MaterialsandMethods EthicsStatement AllprocedureswereapprovedbytheUniversityofAdelaideandInstituteofMedicalandVet- erinaryScienceAnimalEthicsCommittees,andUniversityofAdelaideguidelinesfortheuse andcareoflaboratoryanimalswerefollowed(approvalnumber:M-027–2007).Allanimals wereprovidedwithenvironmentalenrichmentthroughoutthedietaryinterventionandall proceduresthereafterwereperformedunderisoflurane-inducedanaesthesiato minimisesuffering. Animalsanddiets Specificpathogen-free6-week-oldmaleandfemaleC57BL/6JmicewerepurchasedfromLabo- ratoryAnimalServices,UniversityofAdelaide(Adelaide,Australia).Micewerehousedinindi- vidualcagesinananimalholdingroomwithfixedphotoperiod(12:12hrlight/darkcycle)and temperature(24.5°C).Onarrival,miceunderwentanacclimatizationperiodof2wks,during whichtheywereprovidedstandardrodentchowdietandwateradlibitum.Followingtheaccli- matizationperiod,micewererandomlyassignedtooneofthreediets,fedeitherastandard chow((control(CON);AIN-93G),16.1MJ/kg,15.91%energyfromfat,25.08%energyfrom protein,58.48%energyfromcarbohydrate),highsaturatedfat((HF-S;SF07–066),21.8MJ/kg, 59.60%energyfromfat(richinsaturatedfat),18.53%energyfromprotein,21.20%energy fromcarbohydrate),orHF-Sfishoilenriched((HF-FO;SF07–067),21.8MJ/kg,59.60%energy fromfat(7.5%ofHF-Sreplacedwithn-3PUFAs(%asfed)),18.53%energyfromprotein, 21.27%energyfromcarbohydrate)diet.DietsweremanufacturedbySpecialtyFeedsPtyLtd (GlenForrest,Australia)andn-3PUFAsintheHF-FOdietwereprovidedasHiDHA25N tunaoil(26%DHA,6%EPA)(kindlydonatedbyNu-megaIngredientsPtyLtd(Nathan,Aus- tralia)).Bothhighfatdietswerestoredat-20°C,whilsttheHF-FOdietwasalsostoredinali- quotsundernitrogengastoavoidoxidation.Miceweremaintainedontheirrespectivedietsfor aperiodof11or14wks,seeExperimentalProtocolsandTissueCollection,duringwhichfood andwaterwereprovideddailyadlibitum. ExperimentalProtocolsandTissueCollection Cohort1:Miceweremaintainedontheirrespectivedietsfor14wks(±4d).Bodyweight(g) wasmeasuredthriceweeklyandatthetimepointsofarrival(6wks-of-age)andpost-mortem (20wks-of-age)(n=CON(male)=10,CON(female)=12,HF-S(male)=11,HF-S(female)= 11,HF-FO(male)=9,HF-FO(female)=11).Bodyweightuponarrival(Table1;P=0.16 (CONvs.HF-S),P=1.0(CONvs.HF-FO),P=0.99(HF-Svs.HF-FO)andduringtheacclima- tizationperiod(datanotshown;P=0.24(CONvs.HF-S),P=0.42(CONvs.HF-FO),P=1.0 (HF-Svs.HF-FO))wassimilarinalldietarygroups.Foodintakewasmeasureddaily,from whichcumulativeenergyintake(MJ)wascalculated. Following14wksdiet,whilstinthefed-state,miceunderwentnon-recoverysurgeryforthe excisionofskeletalmuscle.Surgerieswerescheduledandperformedtominimisetemporal variation.Anaesthesiawasinducedusingamixtureofoxygen(0.5L/min),nitrousoxide (0.5L/min)and2%isoflurane(Forthane,AbbottAustralasiaPtyLtd(Kurnell,Australia))and maintainedusing1.5%isoflurane,0.4L/minoxygenand0.4L/minnitrousoxide.Thewhole “white”extensordigitorumlongus(EDL)and“red”soleus(SOL)muscleswerethenrapidly dissected,snapfrozeninliquidnitrogenandstoredunderliquidnitrogenvapourphasestorage untilsubsequentanalysesofmRNAcontentandproteinabundance.Followingskeletalmuscle surgery,acardiacpuncturewasperformedandbloodwascollectedinMicrovetteCB300tubes PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 3/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Table1.Bodyweight-relatedandplasmabiochemicalparameters. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO StartWeight(g)† 22.0±0.6 22.5±0.2 22.6±0.3 17.9±0.2 18.9±0.3 18.3±0.3 S FinalWeight(g)† 28.0±0.8 31.1±0.7* 31.8±0.9* 21.9±0.3 26.0±0.8* 27.6±0.6* D,S WeightGain(g)† 6.05±0.8 8.63±0.6* 9.25±0.9* 3.99±0.3 7.14±0.7* 9.25±0.6* D,S EnergyIntake(MJ) 4.36±0.1 5.45±0.1§ 5.08±0.2§ 3.94±0.1 5.50±0.2§ 5.49±0.1§ DxS PooledAT(g) 2.48±0.2 3.00±0.3* 3.19±0.5* 1.64±0.1 2.64±0.4* 2.92±0.3* D SubcutaneousAT(mg/g) 35.0±2.4 40.5±4.8 41.5±6.3 34.0±2.1 44.9±5.4 47.3±6.0 N/S MesentericAT(mg/g) 20.0±1.0 18.7±0.6 15.6±1.1# 17.9±0.6 21.7±2.2 18.4±0.8# D PerirenalAT†(mg/g) 8.2±0.7 9.3±1.1 11.5±2.0* 5.9±0.4 7.8±1.0 9.9±1.0* D,S BrownAT(mg/g) 4.7±0.4 3.8±0.3 5.2±0.5# 4.4±0.4 3.8±0.2 5.5±0.4# D PerigonadalAT(mg/g) 20.0±1.3 22.3±2.4 23.8±4.0 13.4±1.4 18.6±2.3 22.4±2.9* D PlasmaGlucose(mM)† 8.04±0.6 7.98±0.5 6.84±0.7 7.34±0.6 5.96±0.5 6.64±0.5 S PlasmaInsulin(pM) 63.8±12 109.7±29 59.7±14 71.9±14 114.2±26 70.7±18 N/S PlasmaTG(mM) 0.83±0.1 0.62±0.0 0.53±0.1*# 0.72±0.1 0.79±0.1 0.55±0.1*# D Measuredinmaleandfemalemicefedcontrol(CON),highsaturatedfat(HF-S)andhighfatfishoilenriched(HF-FO)dietsfor14wks(Cohort1). Resultsaremean±SEMof9–12animalspergroup.Adiposetissue,AT;TG,triacylglycerol. Statistics:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofsex(S): †P(cid:1)0.05malevsfemale.Diet*sexinteraction(DxS): §P(cid:1)0.05,comparedtoCONofsamegender.N/S,notsignificant. doi:10.1371/journal.pone.0117494.t001 treatedwithEDTAdipotassiumsalt(Sarstedt(Nümbrecht,Europe)).Post-mortem,adipose tissuefromthepooledposteriorandanteriorsubcutaneous(dorso-lumbar,inguinal,gluteal, whiteinterscapular,subscapular,axillo-toracicandsuperficialcervicaldepots);visceralmesen- teric;pooledperirenalandretroperitoneal;pooledbrowndeepcervicalandinterscapular;and perigonadal(periovariac,females;epididymal,males)depotswasdissected,snapfrozeninliq- uidnitrogenandevaluatedforweight.Adiposetissuedepotweightsareexpressedrelativeto bodyweight,toallowcomparisonacrosssexes. Cohort2:Miceweremaintainedontheirrespectivedietsfor11wks(±7d).Following11 wksdiet,whilstinthefed-state,miceunderwentnon-recoverysurgeryfortheexcisionofskele- talmuscle,withanaesthesiainducedandmaintainedasdescribedabove.ThewholeEDL(un- dividedfromthetibialismuscle),andsoleus(undividedfromthegastrocnemiusandplantaris muscles)werethenrapidlydissected,followedbyexcisionofthewholeundividedquadriceps muscles.MusclegroupswereembeddedatrestingtensioninTissue-TekOCT(SakuraFinetek CoLtd(Tokyo,Japan))andgentlyfrozen.OCT-embeddedmuscleswerestoredunderliquid nitrogenvaporphasestorageuntilsubsequenthistologicalanalysesofmusclelipid,fibertype compositionandoxidativecapacity. PlasmaBiochemistry Plasmaglucoseandtriacylglycerol(mM)concentrationsweremeasuredinduplicateusing Gluco-quantGlucose/HKandTGGPO-PAPkits(RocheDiagnostics(Mannheim,Germany)), respectively,ontheCOBASBioautomatedanalysissystem(RocheDiagnosticsAustraliaPty Ltd(CastleHill,Australia)).Plasmainsulinconcentrations(pM)weremeasuredbyDRG PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 4/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice UltrasensitiveMouseInsulinELISA(DRGInstruments(Marburg,Germany))asper manufacturer’sinstructions. mRNAExpressionAnalysesusingtheGenomeLabGeXPGenetic AnalysisSystem TotalRNAfromwholeEDLandsoleusmuscleswasisolatedusingTRIzolreagent(Invitrogen AustraliaPtyLtd(MountWaverley,Australia)).RNAqualityandconcentrationwereevaluat- ed(NanoDrop1000Spectrophotometer,ThermoScientificInc(Wilmington,USA)).RNAwas treatedusingDNaseI(InvitrogenAustraliaPtyLtd).cDNAwasgeneratedbyreversetran- scriptionaccordingtomanufacturer’sinstructions(GenomeLabGeXPGeneticAnalysisSys- tem,BeckmanCoulterInc),resultingincDNAofgene-specificsequenceswithaflanking universalsequence.Forwardandreverseprimersweredesignedtoamplifyasectionofthepro- teincodingsequenceandtobepositionedindifferentexonsasdeterminedbyEntrezNucleo- tide(NationalCenterforBiotechnologyInformation(Bethesda,USA))andEnsembl (EuropeanBioinformaticsInstitute/WellcomeTrustSangerInstitute(Cambridge,United Kingdom)),respectively.PrimersweredesignedusingGenomeLabGeXPeXpressProfilersoft- ware(ver.10.0BeckmanCoulterInc(Fullerton,USA))togenerateanamplifiedproductwitha genefragmentlengthbetween137–356nucleotidesandseparationsizeofatleast6nucleotides. FinallyprimersequencesweresubmittedtoBLAST(BasicLocalAlignmentSearchTool,Na- tionalCenterforBiotechnologyInformation(Bethesda,USA)).Auniversalsequencewasthen addedtobothforwardandreversedesignedprimersequences,generatingchimericprimers. Resultantforwardandreverseprimers(GeneWorksPtyLtd(Hindmarsh,Australia))arelisted intableform(SupportingInformation—S1Table).Primerswereoptimizedinsingletandmul- tiplexreactions,accordingtomanufacturer’sinstructions(GenomeLabGeXPGeneticAnalysis System,BeckmanCoulterInc).MultiplexPCRwasthenperformedontheEppendorfMaster- cyclerGradient(EppendorfSouthPacificPtyLtd(NorthRyde,Australia)).Negativecontrols (notemplate,noreversetranscriptase)wereruninparallel.Fluorescently-labeledPCRprod- uctswereseparated,detected,quantifiedandanalyzedinduplicateusingtheGenomeLab GeXPGeneticAnalysissystemandGenomeLabGeXPeXpressProfilersoftware.Output mRNAcontentswerethennormalizedtotheaveragemRNAcontentof3housekeepinggenes, TATA-bindingprotein,RNAPolymerase2candlargeribosomalproteinP0. ProteincontentanalysesbyWesternBlot WholeEDLandsoleusmuscleswereweighedandhomogenisedinice-coldlysisbufferasde- scribedpreviously[37]andproteinconcentrationdeterminedbybicinchoninicacidprotein assay(PierceBiotechnology(Rockford,USA)).FormeasuringtheabundanceofPPARα,oxi- dativephosphorylation(OXPHOS)complexesI-V,peroxisomeproliferativeactivatedreceptor γcoactivator1α(PGC1α),CPT1bandβ-tubulinproteins,16–20μgofmuscleproteinwassub- jectedtoSDS-PAGEusingprecast10%Bis-Trisgelsor4–12%Bis-Trisgels(Bio-RadLaborato- riesPtyLtd(Gladesville,Australia))andtransferredtoPVDFmembranes.Membraneswere incubatedovernightinprimaryantibody;PPARα(Abcam(Cambridge,UK)),1:500;OXPHOS proteins(MitoSciences(Eugene,USA)),1:250;PGC1α(Abcam),1:1000;CPT1b(AlphaDiag- nosticInternationalInc(SanAntonio,USA)),1:1000;andβ-Tubulin(CellSignalingTechnolo- gy(Danvers,USA)),1:2000.Boundprimaryantibodiesweredetectedwithsheepanti-rabbit (1:2500,ChemiconInternational(Billerica,USA))orgoatanti-mousealkaline-phosphatase linkedantibody(1:2000,Millipore(Billerica,USA)).Membranesweredevelopedwithchemi- fluoresencesubstrate(ECF),scannedbyTyphoonImager(GEHealthcareBio-Sciences(Rydal- mere,Australia))andwerequantifiedusingImageQuantsoftware(MolecularDynamics). PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 5/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice MuscleHistology OCT-embeddedmusclegroups(theEDLandtibialisgroup,andthesoleus,gastrocnemiusand plantarisgroup,andthequadricepsmusclesgroup)werecutto4,9or10μmthickcross-sec- tionsat-20°C.Sectionswerestainedwithhaematoxylinandeosintoconfirmnormalcellular morphology(datanotshown)orwithOilRedO,amarkerofintramyocellularlipidcontent. Serialsectionswerestainedformyofibrillarmyosinadenosinetriphosphatase(mATPase),fol- lowingalkaline(pH10.4)andacidic(pH4.1,pH4.3)preincubations,toevaluatemusclefiber type[38].Sectionswerestainedforsuccinicdehydrogenase(SDH)andNADHtetrazoliumre- ductase(NADH-TR)toconfirmmusclefibertypeandevaluateoxidativecapacity.Following allstaining,slideswerescannedusingtheNanoZoomerDigitalPathologyscanner(Hamama- tsuPhotonicsK.K.(HamamatsuCity,Japan)).ThesoleusandEDLmuscleswereanalyzedin duplicatetodeterminemusclefibertypeandoxidativecapacityinpredominantlyredand whitemuscles,respectively,withthesame75musclefibersineachscannedimageassessedfor allstains.Imageswerescoredwhilstblindedtodietarygroupandsex. TheactivityofmATPasewasjudgedonasubjectivebasisbyoneobserverandmusclefibers weregivenascorefrom1–5basedontheintensityofstaining(1=light,2=light-moderate,3 =moderate,4=moderate-dark,5=dark).Adefinedschemewasusedtoclassifyfibertype, basedonscoresgiventomusclefibersstainedformATPase[38].Fibertypecomposition(%) wascalculatedastheproportionofeachfibertyperelativetothetotalnumberoffibersscored. SDHandNADH-TRstainingintensitywereassessedbymeanpixeldensityusingImageJ software(ver.1.42q,NationalInstituteofHealth(Bethesda,USA))fromgrayscaleimagesman- uallytracedatcellperimeters.ThesamefibersusedtoassesstheactivityofbothSDHand NADH-TRwerealsousedtodeterminemusclefibertypebymATPasestaining,allowingclas- sificationofoxidativeactivityrespectivetofibertype.Cellareaofeachmusclefibertypewas alsoassessed.Theareaofeachfibertypewascalculatedrelativetothetotalareameasured,pro- vidingtherelativeareaoccupiedbyeachmusclefibertypewithintheEDLandsoleusmuscles. Resultsarepresentedasthemeancross-sectionalcellareaofclassifiedfibersandthe%areaoc- cupiedbyeachmusclefibertype. StatisticalAnalysis Alldataarepresentedasmean±SEM.Two-wayANOVA,withpairwisecomparisons(Bonfer- ronipost-hoc),wasusedtodeterminetheeffectofdiet(CON,HF-S,HF-FO),muscle(EDL,so- leus),sex(male,female)andtheirinteractiononparameters.InCohort2analyses,astherewas nosignificantinteractionofsexanddiet,toenhancestatisticalpower,datafrommale(n=3 pergroup)andfemale(n=2–3pergroup)micewerecombined.One-wayANOVAs,with Bonferronipost-hocanalysis,werethereforeusedtodeterminetheeffectofdietintheEDL andsoleusmusclesonmusclefibertype-specificparameters.Statisticswereperformedusing StatisticalPackageforSocialScientistsver.17.0.0(SPSSInc(Chicago,USA)).P<0.05wascon- sideredstatisticallysignificant. Results Effectofdietaryfatcompositiononadiposetissuedistributionand plasmabiochemistry(Table1) ComparedtoCON,HF-S-andHF-FO-fedmicegainedmoreweight(effectofdiet:P(cid:1)0.001), buttherewerenodifferencesbetweenthetwohighfatdietgroups.Irrespectiveofdiet,males gainedmoreweightthanfemales(effectofsex:P(cid:1)0.05).ComparedtoCON,cumulativeener- gyintakewashigherinthetwohighfatdietgroups(effectofdiet:P<0.005),buttherewasno PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 6/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice differencebetweenhighfatdietsandnoeffectofsex.ComparedtoCON,HF-SandHF-FOin- creasedpooledadiposetissuemasssimilarly,inbothsexes(effectofdiet:P(cid:1)0.05,P(cid:1)0.01). However,fatstorageindistinctadiposetissuedepotswasaffectedbydietaryfattyacidcompo- sition.ComparedtoCON,HF-FOincreasedpooledperirenalandretroperitonealadiposetis- sue(effectofdiet:P(cid:1)0.005),irrespectiveofsex,andgonadalperiovariacadiposetissue(effect ofdiet:P(cid:1)0.05)infemalemice.Inmales,gonadaldepot,epididymaladiposetissue,wasun- changedbydiet;similarlysubcutaneousfatmasswasnotdiet-dependent.ComparedtoHF-S, HF-FOdecreasedmesentericadiposetissue(effectofdiet:P(cid:1)0.05)andincreasedbrownadi- posetissue(effectofdiet:P(cid:1)0.05),inbothsexes.Otherthanhigherpooledperirenalandretro- peritonealadiposetissueinmales(effectofsex:P(cid:1)0.05),theadiposetissuedepotsmeasured werenotsexuallydimorphic.ComparedtoCONandHF-S,HF-FOloweredplasmatriacylgly- cerol(effectofdiet:P(cid:1)0.005,P(cid:1)0.05),irrespectiveofsex.Neitherhighfatdietinfluencedplas- maglucosenorinsulinconcentrations,irrespectiveofsex.Irrespectiveofdiet,glucoselevels werehigherinmalesthanfemales(effectofsex:P(cid:1)0.05). Effectofdietaryfatcompositiononskeletalmusclelipidcontentinwhole muscleandmusclefibertypedistribution(Fig.1) IncreasedOilRedOstaining,amarkerofintramyocellularlipid,wasapparentinsoleus(pre- dominatelyred)andquadriceps(mixedfibertype)ofHF-S,butnotCONandHF-FO,mice (Fig.1A).NeitherhighfatdietinfluencedOilRedOstainingintheEDL(predominantlywhite muscle).PercentagemusclefibertypecompositionintheEDLandsoleusmuscleswasnot influencedbydiet(Fig.1B),norwasthecross-sectionalareaofeachmusclefibertype(datanot shown). EffectofdietaryfatcompositiononmusclefattyacidtransportermRNA content(Table2) ComparedtoCON,bothhighfatdietsincreasedFat/cd36andFatp1mRNA(effectofdiet: Fat/Cd36:P(cid:1)0.001;Fatp1:HF-SP(cid:1)0.005;HF-FOP(cid:1)0.001),butHF-FOaloneincreasedFatp4 mRNA(effectofdiet:P(cid:1)0.02),irrespectiveofmuscletype.ComparedtoHF-S,HF-FOin- creasedFat/Cd36mRNA(effectofdiet:P(cid:1)0.001),irrespectiveofmuscletype.Allfattyacid transportersexhibitedgreatermRNAcontentinthesoleusmuscle(effectofmusclefibretype: P(cid:1)0.001).ExceptforhigherFatp1mRNAinmalescomparedtofemalesintheEDLonly (muscle(cid:3)sexinteraction:P(cid:1)0.001),therewerenoothersexdifferencesinfattyacidtransporter mRNAcontent. EffectofdietaryfatcompositiononthemRNAcontentofgenes influencingfattyacidstorageandlipogenesis(Table3) ComparedtoCON,HF-SincreasedSrebf1andInsig1mRNAs(effectofdiet:P(cid:1)0.02),irrespec- tiveofmusclefibertype,andincreasedDgat1anddecreasedScd1mRNAinthesoleusmuscle alone(diet(cid:3)muscleinteraction:P(cid:1)0.05;P(cid:1)0.005).ComparedtoCON,HF-FOincreased Dgat1mRNAinbothmuscles(diet(cid:3)muscleinteraction:P(cid:1)0.001).ComparedtobothCON andHF-S,HF-FOdecreasedScd1mRNAinbothmuscles(diet(cid:3)muscleinteraction:P(cid:1)0.02) andincreasedHslmRNA(effectofdiet:P(cid:1)0.001,P(cid:1)0.05),irrespectiveoffibertype.Com- paredtoHF-Salone,HF-FOloweredthemRNAcontentofInsig1,irrespectiveofmuscletype (effectofdiet:P(cid:1)0.001)andincreasedDgat1mRNAinthesoleusmuscle(diet(cid:3)muscleinterac- tion:P(cid:1)0.001). PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 7/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Fig1.MuscleLipidContentandFiberTypeComposition.(A)OilRedOstaining,amarkerofintramyocellularlipid,ofthewholeextensordigitorum longus(EDL),soleus(SOL)andquadriceps(rectusfemoris(RECTFEM),vastuslateralis(VASTLAT),vastusintermedius(VASTINT)andvastusmedialis (VASTMED))musclesand(B)musclefibertypecomposition(%)oftheEDLandSOLmusclesofmicefedacontrol(CON),highsaturatedfat(HF-S)orhigh fatfishoilenriched(HF-FO)dietfor11wks(Cohort2).Scalebarsrepresent100μm. doi:10.1371/journal.pone.0117494.g001 PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 8/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Table2.FattyacidtransportermRNAcontent. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO Fat/Cd36 EDL 100±6 116±8* 133±5*# 95±7 105±5* 137±7*# D,M SOL+ 100±3 121±4* 146±7*# 94±5 115±6* 139±7*# Fabp EDL 100±3 107±4 100±3 106±8 98±4 107±5 M pm SOL+ 100±3 96±2 110±5 101±6 100±7 113±8 Fatp1 EDL‡ 100±8 137±8* 145±9* 81±10 102±7* 113±13* D,MxS SOL+ 100±6 114±8* 129±6* 93±9 112±12* 141±9* Fatp4 EDL 100±6 99±9 119±13* 107±12 93±7 108±8* D,M SOL+ 100±5 128±10 150±6* 117±12 142±20 142±14* Fattyacidtranslocase(Fat/Cd36),Fattyacidbindingprotein(Fabp )andFattyacidtransportproteins1(Fatp1)and4(Fatp4)inextensordigitorum pm longus(EDL)andsoleus(SOL)musclesofmaleandfemalemicefedcontrol(CON),highsaturatedfat(HF-S)orhighfatfishoilenriched(HF-FO)diets for14wks(Cohort1). mRNAcontentsareexpressedasapercentageofthevalueofmaleanimalsunderCONdiet.Resultsaremean±SEMof9–12animalspergroup. Statistics:Two-wayANOVA:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofmuscletype(M): +P(cid:1)0.05EDLvsSOL.Muscle*sexinteraction(MxS): ‡P(cid:1)0.05,malevsfemale(EDL). doi:10.1371/journal.pone.0117494.t002 Table3.Lipogenesis,triacylglcerolsynthesisandstoragegenesmRNAcontent. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO Srebf1 EDL† 100±5 143±10* 104±11 78±8 103±8* 104±9 D,MxS SOL 100±10+ 99±11*+ 92±16+ 90±11 108±13* 141±27 Insig1 EDL 100±8 128±9* 89±9# 109±15 97±5* 81±5# D SOL 100±8 147±10* 104±9# 112±12 148±18* 107±16# Dgat1‡ EDL 100±15 167±23 197±41* 113±19 178±29 209±22* S,DxM SOL 100±15 162±17*^ 224±39*#^ 117±16 197±34*^ 300±33*#^ Scd1 EDL 100±8 86±8 56±3*# 109±17 77±4 84±7*# DxMMxS SOL† 100±11^ 84±6*^ 32±2*# 149±13^ 110±19*^ 40±5*# Hsl EDL 100±7 128±8 142±14*# 103±12 117±12 135±11*# D,M SOL+ 100±7 117±7 144±13*# 107±12 124±14 150±13*# Sterolregulatoryelementbindingtranscriptionfactor1(Srebf1),insulininducedgene1(Insig1),diacylglycerolacyltransferase1(Dgat1),stearoyl- CoenzymeAdesaturase1(Scd1)andhormonesensitivelipase(Hsl)inextensordigitorumlongus(EDL)andsoleus(SOL)musclesofmaleandfemale micefedcontrol(CON),highsaturatedfat(HF-S)orhighfatfishoilenriched(HF-FO)dietsfor14wks(Cohort1). mRNAcontentsareexpressedasapercentageofthevalueofmaleanimalsunderCONdiet.Resultsaremean±SEMof9–12animalspergroup. Statistics:Two-wayANOVA:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofmuscletype(M): +P(cid:1)0.05EDLvsSOL.Effectofsex(S): ‡P(cid:1)0.05,malevsfemale.Muscle*sexinteraction(MxS): †P(cid:1)0.05,malevsfemale(ofsamemuscle).Diet*muscle(DxM): ^P(cid:1)0.05,EDLvsSOL(ofsamediet). doi:10.1371/journal.pone.0117494.t003 PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 9/19 DietaryFattyAcidsDictateMuscleLipidMetabolisminMice Table4.FattyAcidUtilisationGenemRNAContent. Male Female Stat CON HF-S HF-FO CON HF-S HF-FO Pdk4 EDL 100±18 167±13* 206±25* 131±27 160±20* 192±19* D,M SOL+ 100±14 176±5* 234±13* 118±20 204±28* 241±24* Ampk1 EDL 100±7 97±8 101±8 107±12 97±6 128±11 M SOL+ 100±7 116±7 118±5 122±8 111±6 110±6 Ampk2 EDL† 100±5 106±3* 91±2# 85±5 94±29* 85±7# DMxS SOL+ 100±3 103±4* 93±3# 95±5 106±9* 92±5# Acc- EDL 100±7 110±9 111±10 140±40 104±6 104±12 M SOL+ 100±8 122±7 139±6 134±28 147±33 154±27 Cpt1b‡ EDL 100±6 94±6 115±4*# 65±5 88±3 104±10*# DxMS SOL+ 100±4 111±5 146±4*# 85±4 89±10 116±9*# Pgc1‡ EDL 100±10 88±6 97±5 78±6 79±9 94±13 DxMS SOL 100±11^ 68±9* 185±33*#^ 87±10^ 44±7* 144±16*#^ Ppar EDL 100±5 84±6* 90±6# 105±15 92±11* 95±12# D,M SOL+ 100±9 78±7* 102±7# 104±10 87±6* 100±8# Ucp3 EDL 100±15 116±7 163±18* 78±14 105±12* 136±13* DxM SOL 100±19^ 196±16 283±25* 111±27^ 248±34* 255±24* Pyruvatedehydrogenasekinase4(Pdk4),AMP-activatedproteinkinasecatalyticsubunitsα1(Ampkα1)andα2(Ampkα2),acetyl-CoAcarboxylase- (Acc-),carnitinepalmitoyltransferase1b(Cpt1b),peroxisomeproliferativeactivatedreceptorcoactivator1(Pgc1),peroxisomeproliferatoractivator receptorα(Pparα)anduncouplingprotein3(Ucp3)inextensordigitorumlongus(EDL)andsoleus(SOL)musclesofmaleandfemalemicefedcontrol (CON),highsaturatedfat(HF-S)orhighfatfishoilenriched(HF-FO)dietsfor14wks(Cohort1). mRNAcontentsareexpressedasapercentageofthevalueofmaleanimalsunderCONdiet.Resultsaremean±SEMof9–12animalspergroup. Statistics:Two-wayANOVA:Effectofdiet(D): *P(cid:1)0.05,vsCON; #P(cid:1)0.05,comparedtoHF-S.Effectofmuscletype(M): +P(cid:1)0.05EDLvsSOL.Effectofsex(S): ‡P(cid:1)0.05,malevsfemale.Muscle*sexinteraction(MxS): †P(cid:1)0.05,malevsfemale(ofsamemuscle).Diet*muscle(DxM): ^P(cid:1)0.05,EDLvsSOL(ofsamediet). doi:10.1371/journal.pone.0117494.t004 mRNAcontentsofgenesinvolvedinlipogenesis,lipolysisandtriacylglycerolmetabolism weremostlyhigherinthesoleusthantheEDL,butthiswassex-anddiet-dependent.Srebf1 (malemice),Hsl(irrespectiveofdietorsex),Dgat1(HF-S,HF-FO(diet(cid:3)sex)andScd1(CON, HF-S(diet(cid:3)muscle),maleandfemale(sex(cid:3)muscle))exhibitedgreatermRNAinsoleuscom- paredtoEDLmuscle.Sex-dependenteffectswereobservedforSrebf1(inEDL)whichexhibited greatermRNAinmales,andScd1(insoleus)andDgat1(irrespectiveofdietormuscle)which exhibitedgreatermRNAinfemales. EffectofdietaryfatcompositiononfattyacidoxidationgenemRNA content(Table4) ComparedtoCON,HF-SdecreasedPgc1αmRNAinthesoleusmuscle(diet(cid:3)muscleinterac- tion:P(cid:1)0.001)andPparαmRNAinbothmuscles(effectofdietP(cid:1)0.05)andincreased Ampkα2mRNAirrespectiveofmusclefibertype(effectofdietP(cid:1)0.05).ComparedtoCON, HF-FOincreasedCpt1b,Ucp3,Pgc1αandPdk4mRNAinbothmuscles(diet(cid:3)muscleinterac- tion:P(cid:1)0.05;P(cid:1)0.001;P(cid:1)0.001;andeffectofdiet:P(cid:1)0.001).ComparedtoHF-S,HF-FO PLOSONE|DOI:10.1371/journal.pone.0117494 February6,2015 10/19
Description: