ebook img

Diels–Alder-Crosslinked Polymers Derived from Jatropha Oil PDF

17 Pages·2017·4.9 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diels–Alder-Crosslinked Polymers Derived from Jatropha Oil

polymers Article Diels–Alder-Crosslinked Polymers Derived from Jatropha Oil MuhammadIqbal1,2 ,RemcoArjenKnigge2,HeroJanHeeres2,AntoniusA.Broekhuis2 andFrancescoPicchioni2,* 1 DepartmentofChemistry,InstitutTeknologiBandung,JalanGaneshaNo.10,40132Bandung,Indonesia; [email protected] 2 ENgineeringandTEchnologyInstituteGroningen(ENTEG),ChemicalProductEngineering,Universityof Groningen,Nijenborgh4,9747AGGroningen,TheNetherlands;[email protected](R.A.K.); [email protected](H.J.H.);[email protected](A.A.B.) * Correspondence:[email protected];Tel.:+31-50-363-4333 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:23September2018;Accepted:15October2018;Published:22October2018 Abstract: Methyl oleate, methyl linoleate, and jatropha oil were fully epoxidized using in situ-generatedperformicacid.Theepoxidizedcompoundswerefurtherreactedwithfurfurylaminein asolvent-freereactiontoobtainfuran-functionalizedfattyesterswhich,then,functionedasoligomers foranetworkpreparation. Thermoreversiblecrosslinkingwasobtainedthrougha(retro)Diels–Alder reactionwithbismaleimide,resultingintheformationofabrittlenetworkforfuran-functionalized methyllinoleateandjatrophaoil. Thefuran-functionalizedfattyestersweremixedwithalternating (1,4)-polyketonereactedwithfurfurylamine(PK-Furan)fortestingthemechanicalandself-healing propertieswithDMTAandDSC,respectively. Fullself-healingpropertieswerefound,andfaster thermoreversibilitykineticswereobserved,comparedtoPK-Furan. Keywords: fattyacidmethylester;jatrophaoil;epoxidation;polyketone;thermoreversible 1. Introduction Thermosettingpolymersarewidelyusedinindustry,duetotheirtunablemechanicalproperties (modulus, strength, and durability) as well as their chemical and thermal resistance. This is due totherelativelyhighcrosslinkingdensitydisplayedbythesematerials. However,thesamefactor, i.e.,highcrosslinkingdensity,hampersthepossibilityforthesematerialstobereshapedorrecycled. This is related to the factual impossibility of selectively cleaving the crosslinking bonds without affectingthemainchainones. Asaconsequence,end-of-lifethermosetscanberecycledonlyaccording to a “cradle-to-grave” approach (e.g., by incineration), thus adding pollution to the environment. Anotherdrawbackofthermosetsisthedependenceonoil,themainsourcesforrawmaterialsofthis classofchemicalproducts. Inthelongterm,thesefactorsrenderthermosetpolymersunfit,inageneral context,assustainable(chemical)products[1,2]. Recycling of thermosets has been an important field in sustainability research, since it may decreasetheneedforrawmaterialsandsignificantlylowertheecologicalimpact. Themaindifficulties arethedevelopmentofefficientprocessesfortherecoveryofthestartingmaterialsandtheworse mechanicalpropertiesuponrecycling[3]. Theuseofreversiblecrosslinkingbondsmightrepresent asolutiontothisproblem. Bydisassemblingthepolymernetwork,thematerialcouldberecovered andusedinotherproductsofsimilarvalueandapplications(i.e.,accordingtoa“cradle-to-cradle” approach). Different approaches of obtaining reworkable thermosets properties have already been investigated. Oneofmostpopularapproachesistheuseofthermallyreversiblecrosslinkedpolymers. Polymers2018,10,1177;doi:10.3390/polym10101177 www.mdpi.com/journal/polymers Polymers2018,10,1177 2of17 This concept involves a crosslinking reaction at relatively low temperatures (40–50 ◦C), while the reversereaction(i.e.,thedisassemblingofthenetwork)occursathighertemperatures(110–140◦C)[4]. CrosslinkedpolymerscanbepreparedusingaDiels–Alder(DA)cycloadditionoffuranandmaleimide, givingareversedreactionthrougharetroDiels–Alder(rDA).Forinstance,self-healingthermosets, basedonpolymerizationthroughDiels–Aldercrosslinkingwithatetra-methoxyfuranmonomerand 1,8-bis(maleimide)-1-ethylpropane,havealreadybeenreported[5]. Likewise,thermallyreversible reactions,basedonfuran-functionalizedpolyketoneandbismaleimidethroughDAandrDA,have alreadybeenreported,withexcellentefficiencyforthermosetsself-healing[6,7]. Whiletheapproachesdescribedabovemightprovideasustainablesolutionfortheend-of-lifeof thermosettingpolymers,theuseofrenewableresourcesfor(totalorpartial)substitutionofthermosets raw material might also constitute another added value. Indeed, renewable resources are more environmentally friendly and, also, interesting from an economic point of view (i.e., low cost and abundance). Vegetable oils are considered as one of the potential sources for biopolymers, due to theirunsaturatedfattyestersstructureswhichcontainsdoublebonds(forpossiblefunctionalgroup transformation)[8]. Jatrophaoil(JO)isconsideredasapromisingsourceforpolymer,notonlybecause ofitshighunsaturatedfattyacidcontent(3.2–3.8doublebondspertriglyceridemolecule)but,also, due to its toxic nature of common variety (no direct competition with the food sector) [9]. Even thoughJOismainlyinvestigatedforbiofuelproduction,asagreatpotentialreplacementtodiesel, theoilispotentiallydevelopedforothertypesofapplications(e.g.,lubricant,pharmaceutical,polymer, etc.)[10–14]. Regarding the potentiality of JO in polymer applications, several synthetic routes have been reported in literature, in order to obtain a vegetable oil-based polymer [8]. Some popular routes involvethemodificationofthereactivefunctionalgroupsonthefattychains(i.e.,doublebondsand estergroup),inordertoyieldamoleculewithdesiredfunctionalities(e.g.,hydroxyl,oxiranering,etc.). Ahigh-yieldepoxidationmethodofvegetableoilshasbeenreported,usinginsitu-generatedperformic acid[15]. Inaddition,kineticstudiesonepoxidationofJO,usingperoxyaceticandperoxyformicacid, havealsobeenreported[16]. Intermsofimprovingtheversatilityoftriglycerides,theepoxidation processisconsideredtobeanimportantreactionroute,sincetheoxiraneringismuchmorereactive, and opens the possibility for reaction with various nucleophiles [8]. As an example is the aniline functionalizationofepoxidizedmethyloleate,catalyzedbyanionicliquid[17]. Similarly,additionof aceticanhydridetomethyloleatehasalsobeenreported[18]. Apromisingsalt-catalyzedaminolysis reactionhasalsobeenwidelystudied,forinstance,theuseofLiBr[19]and,also,ZnCl [20],forepoxide 2 ringopeningusingseveraldifferentaliphaticandaromaticamines. Aninterestingresultwasreported regardingthereactionsofepoxidizedtriglyceridewithn-hexylamineand1,6-hexamethylenediamine. Insteadofonlyaminolysis,thereactionalsoshowsamidationasaprimaryreaction,whichleadsto crosslinkingproducts[21]. However,thecrosslinkedproductwasnotexploredanyfurther. Basedonpreviouslyreportedresults,theresearchstrategyofthisworkisdividedintoseveral steps. Thefirststepinvolvesthechemicalmodificationofthedoublebondsonunsaturatedfattyester chainsintoepoxygroups. Thesecondoneisthereactionoffurfurylaminewithepoxidizedfattyesters, yieldingafuran-modifiedmonomer.Thirdly,thepolymerizationofthefuran-functionalizedmonomers withbismaleimideviaDAreaction,followedbycharacterizationasapotentiallythermoreversible polymer.Lastbutnotleast,theuseoftheresultedpolymerasapartialsubstituteinthewell-established thermoreversiblesystemofcrosslinkedfuran-functionalizedalternatingpolyketone. Tothebestofour knowledge,thesecond,third,andfourthstepsoftheresearchhavenotbeenpreviouslyreportedin theliterature. Polymers2018,10,1177 3of17 2. MaterialsandMethods 2.1. Materials Methyl oleate (methyl cis-9-octadecenoate ≥99%, Sigma-Aldrich, Munich Germany), methyl linoleate(methylcis,cis-9,12-octadecadienoate ≥99%, Sigma-Aldrich), andjatrophaoil(3.3double bondspertriglycerideunits,locallyhot-pressedfromJatrophacurcasL.seeds,CapeVerde)areused as sources of fatty acid moieties. For the epoxidation reaction, formic acid (ACS Reag PH Eur ≥99%,MerckChemicals,Darmstadt,Germany),hydrogenperoxide(stabilized,PhEur,BP,USP30%, Merck Chemicals), and benzene (ReagentPlus®, thiophene free, ≥99%, Sigma-Aldrich) were used as received. Trimethylsulfonium hydroxide (derivatization reaction for GC, 0.25 M in methanol, Fluka) and tert-butyl ether (analytical standard, Sigma-Aldrich) are used for fatty esters analysis usingGC-MS.LiBr(anhydrous,≥99%,Sigma-Aldrich)wasusedtoassistthefuranfunctionalization reactionofepoxidizedcompoundusingfurfurylamine(2-aminomethylfuran≥99%,Sigma-Aldrich) andbismaleimideforthecrosslinkingreaction(1,1(cid:48)-(methylenedi-4,1-phenylene)bismaleimide≥95%, Sigma-Aldrich), and were used without further purification. In addition, THF (anhydrous, BHT inhibitor,≥99.9%,Sigma-Aldrich)andchloroform(anhydrous,PCRreagent,amylenestabilizer,≥99% Lab-Scan,Munich,Germany)wereusedassolvent. Chloroform-d(99.96atom%D,Sigma-Aldrich) andDMSO-d (99.96atom%D,Sigma-Aldrich)wereusedforNMRanalysis. 6 2.2. EpoxidationReaction Theepoxidationreactionwasadaptedfrompreviouslyreportedworks[15].Two-stepepoxidation reactionswereperformedtoimproveconversiononalargerreactionscale. Fattyesterorjatropha oil was diluted using benzene (molar ratio of C=C on fatty ester/benzene 1/5) in a three-neck round bottom flask. H O and formic acid (molar ratio C=C/H O /FA = 1:10:1) as oxidant were 2 2 2 2 addeddropwisetotheflaskintwosteps(40◦Cat400rpm). Thefirststepwasallowedtoreactfor 12 h, followed by water layer removal. Subsequently, another batch of FA and H O (molar ratio 2 2 C=C/H O /FA=1:10:1)wasalsoaddeddropwisetothereactionmixture.Afteranother12h,thewater 2 2 layerwasremovedfollowedbywashingthesolutionusingdemineralizedwatervialiquid–liquid extraction (5 times). Afterwards, benzene was removed using rotary evaporation. The resulted productswereanalyzedwith1HNMRandGC-MS. 2.3. FuranFunctionalizationReaction 2.3.1. FunctionalizationofFattyEstersorJatrophaOil Theepoxidizedfattyester(orepoxidizedjatrophaoil)andfurfurylamine(molarratiooxirane ring/furfurylamine1/5)weremixedinaglassvessel. Toassisttheepoxidationreaction,LiBr(110mol % for epoxidized fatty ester or 50 mol % for epoxidized jatropha oil, with respect to the mol of doublebonds)wereaddedtothemixture. Afterwards,thevesselwasclosedandsealed,toprevent evaporationoffurfurylamine. Themixturewasfurtherheatedat80◦C,andmechanicallystirredat 400rpmfor24h. Theproductwasdriedinvacuumovenat50◦Ctoremovetheexcessofunreacted furfurylamine.ThedriedproductwasfurtherdissolvedinCHCl ,followedbyliquid–liquidextraction 3 usingdemineralizedwatertoremovetheLiBrsalt. Afterwards,thechloroformwasremovedusing rotary evaporation followed by drying in vacuum oven at 50 ◦C until constant weight achieved. Thefinalproductswereanalyzedwith1HNMR. 2.3.2. FuranFunctionalizationofAlternatingPolyketone Polyketone-50(50%ethylenecontent)wasaddedtoasealed250mLglassreactor,equippedwith anoilbathandamechanicalstirrerwithaU-typepropeller. Thepolyketonewaspreheatedtothe liquidstateat100◦C.Furfurylamine(equimolaramountsof1,4-dicarbonylgroupsandaminegroups) wasadded,dropwise,in10min. Thereactionproceededfor4h,withastirringspeedof400rpm. Polymers2018,10,1177 4of17 Afterthereaction,themixturewaswashedseveraltimeswithdemineralizedwatertoremovethe unreactedfurfurylamine. Theproductwasfilteredandfreeze-dried,obtainingPK-Furanasalight brownpowder. Thisprocedurerepresentsaslightlymodifiedformofapublishedone[6,7]. 2.4. CrosslinkingReaction 2.4.1. CrosslinkingReactionofFuran-FunctionalizedFattyEsterorJatrophaOil Thefuran-functionalizedcompoundandbismaleimideweredissolvedinaroundbottomflask equippedwithmagneticstirrerandacondenser. Afterwards,thereactionwascarriedoutat50◦C, 300rpm,for24h. Afterchloroformremoval,theproductwasdriedinvacuumovenat50◦Cuntil constantweightachieved. 2.4.2. CrosslinkingofFuran-FunctionalizedFattyEsterorJatrophaOilwithPK-Furan PK-Furan and the furan-modified fatty ester or jatropha oil were reacted with an equimolar amountofbismaleimide(ratioofmaleimide/furangroups—1:1)usingCHCl (10wt%)assolvent, 3 in a round bottom flask equipped with magnetic stirrer and condenser. The fatty acid derivative contained10%or20%ofthetotalfurangroups. Thereactionwascarriedoutat50◦Cand300rpmfor 24h. Theproductwasdriedinavacuumovenat50◦CuntilCHCl wasremoved. 3 2.5. Characterization 2.5.1. 1HNMR Characterizationoftheproductsby1HNMRwasperformedbyusingaVarianMercuryPlus 400 MHz (Mundelein, IL, USA) using CDCl or DMSO-d as solvents. MestRenova software 3 6 (SantiagodeCompostela,Spain) was used for NMR spectra processing. The different peaks were assignedaccordingtopreviouslypublishedresults[10]. Thereactionconversionofepoxidationof methyloleatewascalculatedfromtheratiobetweenpeakareaofepoxidepeakformedinepoxidized methyloleate(–CHOCH–proton2.8ppm)towardstheinitialpeakofthedoublebondfrommethyl oleate(–CH=CH–proton5.4ppm),whichisdefinedas A epoxide Conversion(%) = ×100 (1) AC=C Thecalculationforepoxidationconversionofmethyllinoleatealsofollowstheformulapresented inEquation(1). However,thepeakusedforthecalculationsrepresents4protons(twodoublebonds) each,insteadof2formethyloleate. Thepeakareaofformedepoxidesinepoxidizedmethyllinoleate (–CH<proton3.1and3.2ppm)werecomparedtowardstheinitialpeakofthedoublebondfrom methyllinoleate(–CH<proton5.4ppm). Jatrophaoilconsistsmainlyofoleicandlinoleicchains,attachedtoaglycerol. Peaksbelongingto theglyceridearepresentat4.2and4.3ppm(–CH –),representing4protons,and5.3ppm(–CH<), 2 represent 1 proton which overlaps with the double bond signal. The signals of the overlapped double bond on the triglyceride were calculated by difference, based on the integration of other non-overlappedpeaks(–CH –). Theepoxidesignalsappearat2.8to3.2ppm,similartotheoleicand 2 linoleicproducts. Therefore,theconversionofthereactionisalsocalculatedfollowingEquation(1). 2.5.2. GC-MS EpoxidizedfattyacidwasanalyzedusingTHFassolvent. Fattyacidcompositionofjatrophaoil wasanalyzedasitstransmethylatedderivates[22]. Forsamplepreparation,100mgofjatrophaoilwas dissolvedintert-butylether(5mL).Asampleof130µLwasmixedwith70µLoftrimethylsulfonium hydroxide inside a 2 mL autosampler vial. The vial was capped and properly shaken to ensure mixingbeforeitwasmeasuredusingagaschromatography-massspectrometry(GC-MS)inaHewlett Polymers2018,10,1177 5of17 Packard(HP,PaloAlto,CA,USA)5890seriesIIPluswithHPChemstationG1701BA,B0100/NIST librarysoftwareandaHewlettPackard(HP)5972seriesmassselectivedetector. Fused-silicacolumn (Solgel-1MScolumn: 30m×0.25mm×0.25µm)wasusedasthegascarrieratacolumnpressureof 49kPa. Thecolumntemperaturewas80◦C(hold4min),80–150◦C(rate10◦C/min),150–240◦C(rate 3◦C/min),240◦C(hold10min). Afterthat,thetemperaturewasfurtherincreasedat3◦C/minto 240◦C,andheldfor10min. Asplitratioof1:100wasused,theinjectoranddetectortemperaturewere setat280◦Cwhereasthegasflowratewassetto1mL/min. 2.5.3. DSC Analysisofthermoreversiblecrosslinkingwasperformedusingdifferentialscanningcalorimetry (DSC).Samplesof10to15mgwereplacedinanaluminumpan. Aftersealingthepan,thetemperature wasraisedat5◦C/min,fromastartingtemperaturetoamaximumtemperature. Thesampleswere keptatthemaximumtemperaturefor1min. Aftercoolingdown,thecyclewasrepeatedforanoverall of4cycles. Theoutputwasgivenastheheatflowinthesystemagainsttemperature. Allfirstcyclesof theDSCwereremovedfromthethermogram,sinceitmostlyrepresentsthermalhistoryofthesample. Therefore,secondcycleswerefurtherreferredtoasfirstcycles,andsoon. 2.5.4. DMTA DynamicmechanicalthermalanalysiswasachievedusingaRheometricsScientificsolidanalyzer (RSAII,Midland,ON,Canada). Analysiswasconductedinthedualcantilevermodewithastrainrate of0.025%andanoscillationfrequencyof1Hz. Thedistancebetweentheoutersetpointswas35mm. Thesamplewasheatedfromroomtemperatureto120◦C,withaheatingrateof3◦C/min. Samples neededfortheDMTAmeasurementswerepowderedinacoffeegrinder,andpressedinrectangular barsat120◦Cand4MPafor20min,withalengthof54mm,awidthof6mm,andathicknessof 1.5mm. Fortheanalysis,thebarswereclippedbetweenthescrews. Theouterscrewswerekeptinplace withadistanceof35mm,andtheinnerscrewwasmovedupanddownwithastrainrateof0.025%and afrequencyof1Hzinthedualcantilevermode. Thetemperaturewasraisedfromroomtemperature to120◦C,withaheatingrateof3◦C/min. Theoutputexistsoutofalossmodulus,storagemodulus, andthetan(δ)againsttemperature. Thelossmodulusorelasticmodulus(E’)showstheabilityof theproducttoreturntoitsinitialstate. Itisalsoreferredtoasthematerial’s“stiffness.”Thestorage modulus(E”)representsinternalstrainandviscousforces,ameasureofdeformation. Theratioof the loss modulus to the storage modulus gives the dampening property, tan(δ). It relates to all of themolecularmovementandphasetransitions. Forexample,apeakoftan(δ)isfoundattheT for g apolymer. TheDMTAanalysiswasdividedintotwosteps. Twocyclesweredoneconsequentlyper sample,onlyallowingthesystemtocoolbetweenthetworuns. Afterwards,thesamplewas“healed” for 24 h at 50 ◦C, to ensure bond reconstitution, followed by another two cycles of measurements (Figure1). Polymers2018,10,1177 6of17 Figure1.SequenceofDMTAanalysis. 3. Results 3.1. Furan-FunctionalizedMethylOleateandMethylLinoleate-BasedPolymers Thissectiondiscussestheuseofmethyloleate(MO)andmethyllinoleate(LO)asapreliminary study, with respect to further study of jatropha oil (JO) as a crosslinked polymer precursor. Even thoughthefattyacidcontentofJOmayvarydependingonspecies, climate, soilquality, etc., MO and LO are chosen based on the fact that both components are the major fatty acid constituents in JO [9,10]. As the first step of the polymer synthesis, MO and LO were epoxidized according to publishedprocedures[15]. FormicacidwasreactedinsituwithH O toformperformicacid,which 2 2 actsasanoxygendonorforthealkene. ThedonatedoxygenisreplenishedbyH O ,generatingwater 2 2 (Scheme1). Formicacidcanalsoopentheoxiranering,andhydrolysiscanoccurinthepresenceof water. Benzenehasbeenaddedasdiluentoftheorganicphase(i.e.,fattyesters)tominimizeoxirane ringopening[23]. Sincethetwolayersareimmiscible,thedegreeofmixinghasalargeinfluenceon thereaction. However,atacertainpoint,ahighdegreeofmixingmaypromotetheunwantedoxirane ringdegradationprocess. Inaddition,higherreactiontemperaturesgenerallyfavorthedegradation reaction[15,16]. Theopeningoftheoxiraneringmayoccurinthepresenceofwaterandformicacidand,toalesser extent,H O . Highchemicalactivityofformicacidmaycausedepletionofoxygeninthesystemif 2 2 theH O isnolongerpresent,resultinginlowerconversions[15,16]. Therefore,two-stepepoxidation 2 2 reactionswereformulatedtoensurethepresenceofH O . Asexpected,theepoxidationreactionof 2 2 MOandLOgivesfullconversion(NMRspectranotshownforbrevity)and,also,goodyield(i.e.,MO: 76%andLO:92%). Inaddition,fullconversiongivesoneoxiranegroupforepoxidizedmethyloleate (ep-MO),andtwogroupsforepoxidizedmethyllinoleate(ep-LO).Thisnumberisratherimportantfor furthersteps,sincetheoxiraneringactsasthebasisforthefuranfunctionalizationreaction. Tothebestofourknowledge,thereactionbetweenfurfurylamineandepoxidizedfattyesterhas notbeenreportedinliterature. Thereactiondoesnotspontaneouslytakeplaceatatmosphericpressure androomtemperature. Sincetheprimaryamineoffurfurylaminemoleculeisratherweaktoundergo ringopeningreactionwiththeoxiranegroup,thisaminolysisreactionrequiresassistanceintheform ofacatalyst. Inaddition,thecatalystisalsoexpectedtoassistamidationreactionontheestergroups oftheepoxidizedfattyesters(Figure2). Bothreactionsareratherimportant,especiallyforep-MO, sinceitrequiresatleasttwofurangroupsinordertoassembleapolymericchain. Polymers2018,10,1177 7of17 Figure2.1HNMR-spectrumofFAOwithfunctionalgroupsassigned. Polymers2018,10,1177 8of17 Scheme1.Reactionschemeofjatrophaoil-basedDiels–Alder-crosslinkedpolymer. Polymers2018,10,1177 9of17 Basedonasimilaraminolysisprocedurewithdifferentprimaryaminesdescribedinliterature[15, 18], oxirane contained ep-MO or ep-LO was reacted with furfurylamine. After 24 h, the reaction givesaconversionof82%ontheestergroupand89%ontheepoxideforep-MO.Whileep-LOhas aconversionof83%ontheestergroupand75%ontheepoxide(confirmedbyNMR).Thepresence oftwooxiraneringclosetoeachotheronep-LOisbelievedtoberesponsibleforloweraminolysis conversion(sterichindrance). Thesepartialconversionsareactuallydesiredforlaterreactionswith JO(seebelow). Inaddition,thefunctionalizedoleic(FAO)andfuran-functionalizedlinoleic(FALO) chainshaveapproximately1.7and2.4furangroups/moleculerespectively. Themixturesofpartially convertedFAO(includingalsostereo-isomers)displayabroadrangeofprotonsignalsin1HNMR spectra. Therefore,signalassignmentishighlightedonlytotheimportantpeaks(Figure2). Aspreliminarystudy,FAOwasreactedwithbismaleimidetoobtainpolymerasaresultoftheDA adductformation. WithamaximumoftwopossibleadductsiteperFAOmolecule,thereactionmay onlygivealinearchain. However,poorsolubilityoftheresultedpolymercr-FAOinsomesolvents (i.e.,acetone,THF,chloroform,andDMSO)atroomtemperatureindicatesarelativelyhighmolecular weightproductwasobtained. TheDA-rDAthermoreversibilitysystemoncr-FAOwasinvestigated usingDSC(Figure3). At110◦C,bondsruptureviarDAreactionroutestartstakingplaceindicatedby heatuptake. Eachconsecutivecyclerevealsthedecreaseonthematerial“thermo-recoveringdegree” specifiedbythelossofenergyuptake. Figure3.DSCthermogramofcr-FAO.(25◦C→180◦Cfor1min,10◦C/min,3cycles). The DA-rDA system is an equilibrium system with respect to temperature and also a time-dependent mechanism, especially at lower temperature region. The decrease on thermo-recovering degree most likely caused by the partial failure on molecular reconstitution via DA reaction at given time. The presence of more stable DA adduct isomer (i.e., endo and exo adduct)alsocontributetothedropofthermo-recoveringdegree,aspreviouslyreportedforsimilar systems[7]. Inaddition,lossoffunctionalitythroughpermanentcrosslinkingalsoarisesasanother possibility. Thelatterpossibilityonlyimpliesifreductionofweightoccurs. Thepossibilitycanbe eliminatedsincethethermogramprofileat40◦Cto80◦Cshowsnoapparentdecreaseofheatuptake. ThecrosslinkingreactionofFALOandbismaleimide(I =1)givesmuchbrittleproductcomparedto m/f Polymers2018,10,1177 10of17 cr-FAO.ThedifferencecausedbythenumberofpossiblefuranfunctionalitytoundergoDAreaction withbisamleimide. Acrosslinkedproductwasobtainedsincetheaveragefurangroupspermolecules aremorethantwo. 3.2. Furan-FunctionalizedJatrophaOil-BasedPolymers Throughsamemethodusedonepoxidationofthefattyesters(i.e.,MOandLO),JOwasfully epoxidizedresultinghighyieldof96%(Figure4). Therefore,thefullconversiongivesanaverageof 3.3epoxidesgrouppertriglyceridemoleculesofep-JO.Asmentionedearlier,thissumofoxiranering permoleculesisimportantsinceitwillundergoaminolysisreactionwithfurfurylamineasnucleophile. Inaddition,occurringamidationreactionontheestergroupssplitsthefattyesterfromtheoriginal triglyceridemolecule. Reactionsofep-JOwithfurfurylaminewereperformedwithlowerLiBrintake(i.e.,50%). Partial amidationonfuranfunctionalizationreactionofep-JOresultinabroadvarietyofFurfuryl-amine functionalizedJatrophaOil(FAJO)products(i.e.,furan-functionalizedmono-,di-,triglyceride,andfree fattyamide). Themultipletat3.7ppmgivesstrongindicationofglycerolormonoglyceride(Figure4). However,somesignaloverlapoccurssinceaminolysisproductsgiveabroadsignalbetween3.7to 4.0ppm. Sterichindranceofthetriglyceridestructurecontributestopartialaminolysisreaction,with remainingunreactedepoxidepeaksat2.9to3.2ppm. Atriglyceridecontainsthreeestergroupsclose togethermakingthereactionsitebulkyforamidation. Thestereochemistryofthemoleculehindersits accessibilitytonucleophile(i.e.,furfurylamine)aswellasLiBrtoassistthereaction.Improvingreaction conversionbyusinganexcessofLiBratcertainpointmightleadtocontra-productiveresultssincethe metalionmayalsointeractwithtwocarbonylgroupsthroughachelationeffect[20]. Theamidesignal at4.4ppmisusedtocalculatetheamidationreactionconversion,whiletheremainingoxiranegroup isusedfortheaminolysis. Atotalof4.2furangroupswerefoundforeverytriglycerideascombined reactionofamidation(47%conversion)andaminolysis(74%conversion). Figure4.1HNMRspectraoffuran-functionalizedjatrophaoil(400MHz;CDCl ). 3 Crosslinking reactions of FAJO using bismaleimide (equimolar ratio) were performed in a reflux setup. The resulted product (cr-FAJO, I = 1) was analyzed using DSC to investigate m/f itsthermoreversibilityprofile(Figure5). Anincreaseofheatflowstartstooccuraround125◦Cforeach cyclewhichrepresentstherDAreaction.Similartocr-FAOandcr-FALO,thethermo-recoveringdegree of each cycles decrease gradually compared to its previous cycles. The decrease can be explained using same possibilities as for crosslinked fatty esters (i.e., short time for bond reconstitution and formationofmostthermodynamicallystableadductsisomer)[6,7]. Inaddition,relativelyhighdegree ofcrosslinkoncr-FAJOcausedtheproducttohaveabrittlenature.

Description:
10, 40132 Bandung, Indonesia; [email protected]. 2. ENgineering and TEchnology Institute Groningen (ENTEG), Chemical Product Engineering,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.