DIELECTRIC RESONATOR ANTENNAS AND BANDWIDTH ENHANCEMENT TECHNIQUES A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy In the Faculty of Engineering and Physical Sciences 2014 MARIA DE LOS ANGELES CASTILLO SOLIS School of Electrical and Electronic Engineering / Microwave and Communication System Group Especialmente dedico este trabajo a la memoria de mi amada abuelita. Dedicated to my family and my loving husband who motivated me to study this PhD 2 A(cid:30464) The author gratefully thanks her supervisor Professor Zhipeng Wu for his guidance, supervision, patience and support that helped overcoming difficulties in making possible the achievement of aims and objectives of this project. Also the author gratefully thanks the Mexican National Council for Science and Technology (CONACyT) for awarding a scholarship within the CONACyT scholarships abroad program to pursue the doctorate degree in Electrical and Electronic Engineering. Much gratitude must also go to the Latin American Postgraduate Program, especially to Professors Teresa Alonso Rasgado and Colin Bailey for opening the program to the Baja California Autonomous University and giving the opportunity to be considered for the program. The above and Miss Alison McMurray are also greatly appreciated for working continuously in helping all the students of the program in many ways e.g. duties and rights as overseas PhD students, information with / from CONACyT, Manchester daily life advice, conferences and talks. The author deeply thanks her husband Mr. Mark Dean and his family for their unconditional help, support, patience, and encouragement. Mr. Mark Dean and his father Mr. Terrence having spent much time in reviewing reports during the course of the investigation, published papers, posters and this thesis work. The author deeply thanks her family and friends for their moral help and support that provided encouragement for the author to get to the end of this PhD process. The author deeply thanks both her mother Adelina Solis Barrera and grandmother Maria de la Luz Barrera de Solis† who gave her example of faith, determination, dedication in overcoming hard work, and to never give up despite the difficulties. Adelina and Maria de la Luz always showed her that there is always a solution for everything in life. Special thanks to members of Microwave and Communication Systems group at the Electrical and Electronic Engineering School, for creating a friendly and supportive environment for the everyday work. Special thanks to Dr. Arthur Haigh, Dr. Chahyo Mustiko, Dr. Dimitrios Tsamakis and Dr. Graham Parkinson for supporting and facilitating to her the use of antennas, equipment and key information. Thanks to PhD student Sareh Malekpour and PhD student Iris Garcia Rios for their friendship and heartfelt support. Special thanks to Professor Ali Rezzadeh, PhD student Peter Kyabaggu and PhD student Norshakila Haris for facilitating the use of millimetre wave transmission lines, their knowledge and experience. The author gratefully thanks all those professionals who taught her from basic knowledge to the specialized science alongside her formal education. She especially thanks all the professionals that facilitate all the workshops and services offered within the University of Manchester as she always received help and support in a friendly and efficient environment that contributed to the development of the project. Special thanks to Mrs. Bernadette Bellingham, Mrs. Marie Davies, Mr. Graham Richardson, the IT services, the PCB and mechanical workshops members for always finding a solution for any administrative or technical problems. And finally the author would like to thank Professor Z. W. Lu of the Department of Electronic Science and Technology of the Huazhong University of Science and Technology, Wuhan, China, for providing the transparent material used in this project. In the same way she would like to thank Rogers Corporation for providing the ceramic PCB laminates used in this project. 3 About the author Maria de los Angeles Castillo Solis, the author of this thesis: received the BEng degree from Mexicali’s Technological Institute, and the MEng degree in Electronic Engineering from Baja California’s Autonomous University, which are both in the town of Mexicali, Baja California in the north of Mexico (United Mexican States). Since high school she developed an interest in science participating in science and knowledge contests. At the end of her high schools studies she went to the University in order to study electronic engineering. The Mexican Universities where she studied her degrees were relatively new in the area of wireless communications with lack of the associated technology. It wasn’t until 2010 when she had the opportunity to get a grant from CONACyT to study for a PhD in research at the University of Manchester, UK with better access to technology where she developed further skills and abilities in practical science. 4 DECLARATION No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. Maria de los Angeles Castillo Solis COPYRIGHT STATEMENT i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes. ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made. iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions. iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s policy on Presentation of Theses 5 Abstract In this thesis a technique that is being used in another area of technology to optimize light reception in a photographic camera was also applied to the dielectric resonator antenna. The technique consisting of the use of thin film to couple the media and camera impedances resulted in a dielectric resonator antenna bandwidth enhancement technique. The bandwidth enhancement technique was found when thin film dielectric layer structure was used to couple the dielectric resonator and its feed mechanism. Remarkable good performance was detected with a coplanar waveguide fed cylindrical dielectric resonator antenna which resulted in an improvement to its fractional bandwidth from 7.41% to 50.85%. Extensive experimental work was undertaken in order to explore the extent offered in bandwidth performance by using thin film dielectric layer structure in the dielectric resonator antenna performance. The experimental tasks were designed in order to investigate the influence of the thin film dielectric layer structure in relation to its size, shape, thickness, position and direction. Experimental results were supported with simulation work with the computer simulation technology microwave studio. The pieces of the material used for undertaking this experimental work were manually handcrafted. Four different dielectric resonator antenna designs were used in order to carry out the experimental work including the coplanar waveguide fed cylindrical dielectric resonator antenna. The other three dielectric resonator antennas were implemented using the same microstrip feed mechanism. Improved performance in bandwidth was achieved for all the designs. Optimization of the incoming signal was observed when a piece of thin film dielectric layer structure was placed in position between the feed mechanism and the dielectric resonator antenna. The optimization was observed as an enhancement in both the return loss level and the bandwidth of work. Different unexpected operational modes from were activated, such modes being called perturbed modes. Two different shapes were used in this project. Cylindrical dielectric resonator antenna (ɛ = r 37) from a commercial provider and two novel rectangular dielectric resonator antennas. The novel rectangular dielectric resonator antennas were created with the methodology presented in this thesis. The rectangular dielectric resonator antennas were elaborated with transparent ceramic material (ɛ = 7) and TMM10i (ɛ = 9.8) from the Rogers Corporation r r company. The bandwidth enhancement technique was tested in novel embedded dielectric resonator antennas. A coplanar waveguide fed embedded cylindrical dielectric resonator antenna achieved a maximum bandwidth enhancement of 156.77% around f = 3.79 GHz with a thin film dielectric layer structure modified rectangular piece on one edge. Escalation to dielectric resonator antenna design at millimeter wave frequencies was achieved by using thin film dielectric layer structure bandwidth enhancement technique and a handcrafted printed circuit board millimeter wave feed mechanism. The millimeter wave feed mechanisms were achieved using a low cost alternative technique conceived as part of this project. Millimeter wave dielectric resonator antennas were implemented using thin film dielectric layers structure. The antennas deliver an adequate performance in bandwidth. The work presented in this thesis demonstrates dielectric resonator antenna simpler geometry, simple couple schemes, small size, low profile, light weight, and ease of excitation and orientation. Other parameters have also been investigated covering reduced complexity, high degree of flexibility, ease of fabrication and the use of low cost technology to escalate to millimeter wave frequencies. 6 Table of Contents List of symbols and abbreviations ........................................................................................................ 12 List of Figures ...................................................................................................................................... 17 List of Tables ....................................................................................................................................... 29 Chapter 1 Dielectric resonator antenna technology ............................................................................ 30 1.1 Introduction ................................................................................................................................... 30 1.2 Dielectric resonator antenna bandwidth and bandwidth enhancement .......................................... 31 1.2.1 Combination of resonances ....................................................................................................... 33 1.2.2 Multiple resonances................................................................................................................... 33 1.3 Ultra wideband dielectric resonator antenna ................................................................................. 34 1.4 Effect of adhesives in bandwidth performance ............................................................................. 34 1.5 Potential applications of dielectric resonator antennas .................................................................. 34 1.6 Project aim and objectives ............................................................................................................. 34 1.7 Thesis structure ............................................................................................................................. 35 Chapter 2 Dielectric resonator antenna background........................................................................... 36 2.1 Introduction ................................................................................................................................... 36 2.2 Dielectric resonator antenna concept............................................................................................. 36 2.2.1 Dielectric resonator antenna characteristics .............................................................................. 37 2.2.2 Dielectric resonator antenna design........................................................................................... 38 2.2.3 Dielectric resonator antenna size ............................................................................................... 41 2.2.4 Dielectric resonator antenna shape ............................................................................................ 42 2.3 Dielectric resonator material ......................................................................................................... 42 2.3.1 Properties of dielectric materials ............................................................................................... 43 2.3.2 Properties of dielectric resonator material ................................................................................. 43 2.3.3 Dielectric resonator material behaviour in the presence of an electric field .............................. 43 2.3.4 Dielectric constant of a dielectric resonator material ................................................................ 44 2.4 Dielectric resonator antenna performance ..................................................................................... 45 2.4.1 Radiation Q factor ...................................................................................................................... 46 2.4.2 Bandwidth ................................................................................................................................. 46 2.4.3 Modes of operation.................................................................................................................... 47 2.4.4 Radiation pattern ....................................................................................................................... 48 2.4.5 Polarization ............................................................................................................................... 50 Chapter 3 Conventional dielectric resonator antenna designs ............................................................ 51 3.1 Introduction ................................................................................................................................... 51 3.2 Dielectric resonator antenna design .............................................................................................. 52 3.2.1 Selection of materials .................................................................................................................. 52 3.2.2 Cylindrical dielectric resonator antenna design considerations ................................................. 53 3.2.3 Rectangular dielectric resonator antenna design considerations ............................................... 56 3.3 Dielectric resonator antenna design methodologies ...................................................................... 59 3.3.1 Dielectric resonator antenna design from simulation ................................................................ 59 7 3.3.2 Dielectric resonator antenna design from empirical work ......................................................... 60 3.4 Dielectric resonator antenna measurement .................................................................................... 61 3.4.1 S measurement ........................................................................................................................ 61 11 3.4.2 Radiation pattern measurement ................................................................................................. 61 3.4.3 Radiation efficiency determination ........................................................................................... 63 3.5 Conventional dielectric resonator antenna designs with microstrip feed line as feed mechanism 64 3.5.1 COD1: microstrip fed cylindrical dielectric resonator antenna ................................................. 65 3.5.2 COD2: microstrip-fed TMM10i-rectangular dielectric resonator antenna ................................ 70 3.5.3 COD3: microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna .............. 75 3.6 Summary and conclusions ............................................................................................................. 78 Chapter 4 Dielectric resonator antenna bandwidth enhancement performance technique ................. 80 4.1 Introduction ................................................................................................................................... 80 4.2 Thin film dielectric layer structure ................................................................................................ 82 4.2.1 Mylar and BoPET...................................................................................................................... 82 4.2.2 Theoretical foundations ............................................................................................................. 83 4.3 Approach to thin film dielectric layer structure bandwidth enhancement technique .................... 87 4.3.1 Effect of thin film dielectric layer structure size and shape on dielectric resonator antenna designs .................................................................................................................................................. 88 4.3.2 Effect of thin film dielectric layer structure thickness on dielectric resonator antenna designs 88 4.3.3 Effect of experimental thin film dielectric layer structure on dielectric resonator antenna designs .................................................................................................................................................. 89 4.3.4 Dielectric resonator antenna performances with the presence of other dielectrics .................... 89 4.3.5 Bandwidth enhancement technique studies considerations ....................................................... 90 4.3.6 Bandwidth enhancement calculation ......................................................................................... 91 4.4 Results obtained from study of thin film dielectric layer structure size effect on dielectric resonator antenna designs...................................................................................................................... 91 4.4.1 D1: size effect on a microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna .............................................................................................................................................................. 94 4.4.2 D2: size effect on a microstrip-90º-strip fed TMM10i-rectangular dielectric resonator antenna ............................................................................................................................................................ 106 4.4.3 D4: size effect on a CPW fed cylindrical dielectric resonator antenna ................................... 108 4.5 Results obtained from study of thin film dielectric layer structure thickness effect on dielectric resonator antenna designs.................................................................................................................... 112 4.5.1 D1: thickness effect on a microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna ............................................................................................................................................... 113 4.5.2 D2: thickness effect on a microstrip-strip fed TMM10i-rectangular dielectric resonator antenna ............................................................................................................................................................ 123 4.5.3 D3: thickness effect on a microstrip fed cylindrical dielectric resonator antenna ................... 125 4.6 Results obtained from study of experimental thin film dielectric layer structure effect on dielectric resonator antenna designs .................................................................................................... 127 4.6.1 D1: Experimental thin film dielectric layer structure effect on a microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna .......................................................................... 129 4.7 Results obtained from study of plastic and paper effect on dielectric resonator antenna designs140 4.7.1 Paper effect on dielectric resonator antenna designs ............................................................... 141 4.7.2 Plastic effect on dielectric resonator antenna designs ............................................................. 142 8 4.8 Summary and conclusions ........................................................................................................... 143 Chapter 5 Study of commercial thin film dielectric layer structure modified rectangular area pieces effect on dielectric resonator antenna designs .................................................................................... 145 5.1 Introduction ................................................................................................................................. 145 5.1.1 Approach to modified thin film dielectric layer structure rectangular shapes ......................... 145 5.2 D1: modified rectangular shapes effect on a microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna ................................................................................................................. 148 5.2.1 D1 with pieces modified of one edge only: measured S results............................................ 148 11 5.2.2 D1 with pieces modified of two edges: measured S results .................................................. 152 11 5.2.3 D1 with modified pieces: analysis of results and conclusion .................................................. 153 5.3 D2: modified rectangular shapes effect on a microstrip-90º-strip fed TMM10i-rectangular dielectric resonator antenna ................................................................................................................. 155 5.3.1 D2 with pieces modified by one edge only: measured S results ........................................... 155 11 5.3.2 D2 with pieces modified of two edges: measured S results .................................................. 159 11 5.3.3 D2 with modified pieces: analysis of results and conclusion .................................................. 160 5.4 D3: modified rectangular shapes effect on a microstrip fed cylindrical dielectric resonator antenna ................................................................................................................................................ 162 5.4.1 D3: measured S results ......................................................................................................... 162 11 5.4.2 D3: analysis of results and conclusion .................................................................................... 164 5.5 D4: modified rectangular shapes effect on a CPW fed cylindrical dielectric resonator antenna . 165 5.5.1 D4: measured S results ......................................................................................................... 166 11 5.5.2 D4: analysis of results ............................................................................................................. 168 5.6 Summary and conclusions ........................................................................................................... 169 Chapter 6 Embedded dielectric resonator antenna designs .............................................................. 172 6.1 Introduction ................................................................................................................................. 172 6.2 Development of embedded dielectric resonator antenna designs ................................................ 172 6.2.1 Embedded dielectric resonator antenna characteristics and features ....................................... 173 6.2.2 Embedded dielectric resonator antenna characteristics and features ....................................... 174 6.2.3 Cavity for the embedded dielectric resonator antenna design ................................................. 175 6.2.4 Novel step-probe and step-strip elements ................................................................................ 175 6.3 Implementation of embedded dielectric resonator antenna designs ............................................ 178 6.3.1 ED1: CPW-step-probe fed embedded transparent-rectangular dielectric resonator antenna ... 179 6.3.2 ED2: CPW-step-probe fed embedded TMM10i-rectangular dielectric resonator antenna ...... 186 6.4 Embedded dielectric resonator antenna designs with thin film dielectric layer structure ........... 191 6.4.1 ED3: microstrip-step-strip fed embedded cylindrical dielectric resonator antenna with thin film dielectric layer structure ..................................................................................................................... 192 6.4.2 ED4: CPW-step-probe fed embedded cylindrical dielectric resonator antenna with thin film dielectric layer structure ..................................................................................................................... 198 6.4.3 ED5: CPW-step-probe fed embedded transparent-rectangular dielectric resonator antenna with thin film dielectric layer structure ...................................................................................................... 204 6.5 Summary of results of embedded dielectric resonator antenna designs ...................................... 209 6.6 Conclusions ................................................................................................................................. 210 Chapter 7 Experimental study of alternative low cost technology millimetre wave dielectric resonator antenna ............................................................................................................................... 212 7.1 Introduction ................................................................................................................................. 212 9 7.2 Dielectric resonator antenna designs at millimeter wave frequencies ......................................... 214 7.2.1 Aperture–coupling ................................................................................................................... 214 7.2.2 Dielectric resonator antenna fabrication .................................................................................. 215 7.3 Transmission lines at millimeter wave frequencies ..................................................................... 215 7.4 Millimetre wave measurement equipment .................................................................................. 216 7.4.1 Calibration of millimetre wave equipment .............................................................................. 217 7.5 Low cost millimeter wave technique approach ........................................................................... 218 7.5.1 Detection of performance at millimetre wave frequencies ...................................................... 219 7.5.2 Approach to materials selection ................................................................................................ 220 7.5.3 Creating a ceramic millimeter wave CPW transmission line .................................................. 221 7.6 Experimental study of handcraft millimeter wave rectangular dielectric resonator antenna ...... 222 7.6.1 Ceramic dielectric resonator pieces created for millimeter wave ............................................ 222 7.6.2 Feed mechanism dielectric resonator antenna characterization ............................................... 223 7.6.3 Implementation and measurement of handcraft millimetre wave rectangular dielectric resonator antenna ................................................................................................................................................ 223 7.7 Summary and conclusions ........................................................................................................... 228 Chapter 8 Dielectric resonator antenna: discussions, conclusions and future work ......................... 230 8.1 Introduction ................................................................................................................................. 230 8.2 Dielectric resonator antenna designs methodology ..................................................................... 232 8.2.1 Rectangular dielectric resonator antenna design considerations ............................................. 232 8.2.2 Conventional dielectric resonator antenna designs with microstrip feed line as feed mechanism ............................................................................................................................................................ 233 8.3 Bandwidth enhancement technique ............................................................................................. 235 8.4 Study of thin film dielectric layer structure size effect on dielectric resonator antenna designs ... 235 8.4.1 D1: size effect on a microstrip-90ºstrip fed transparent-rectangular dielectric resonator antenna ............................................................................................................................................................ 236 8.4.2 D2: size effect on a microstrip-90º-strip fed TMM10i-rectangular dielectric resonator antenna ............................................................................................................................................................ 236 8.4.3 D4: size effect on a CPW fed cylindrical dielectric resonator antenna ................................... 237 8.5 Study of thin film dielectric layer structure thickness effect on dielectric resonator antenna designs ................................................................................................................................................. 237 8.5.1 D1: thickness effect on a microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna ............................................................................................................................................... 237 8.5.2 D2: thickness effect on a microstrip-strip fed TMM10i-rectangular dielectric resonator antenna ............................................................................................................................................................ 238 8.5.3 D3: thickness effect on a microstrip fed cylindrical dielectric resonator antenna ................... 238 8.6 Study of experimental thin film dielectric layer structure effect on dielectric resonator antenna designs ................................................................................................................................................. 238 8.6.1 D1: Experimental thin film dielectric layer structure effect on a microstrip-90º-strip fed transparent-rectangular dielectric resonator antenna .......................................................................... 239 8.7 Study of plastic and paper effect on dielectric resonator antenna designs .................................. 239 8.7.1 Paper effect on dielectric resonator antenna designs ............................................................... 240 8.7.2 Plastic effect on dielectric resonator antenna designs ............................................................... 240 8.8 Study of commercial thin film dielectric layer structure modified rectangular area pieces effect on dielectric resonator antenna designs ............................................................................................... 240 10
Description: