ebook img

Dielectric properties of poly(ethyelene-co-butyl acrylate) filled with Alumina nanoparticles PDF

87 Pages·2011·4.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dielectric properties of poly(ethyelene-co-butyl acrylate) filled with Alumina nanoparticles

co Dielectric properties of poly(ethyelene- -butyl acrylate) filled with Alumina nanoparticles NADEJDA JÄVERBERG Licentiate Thesis Stockholm, Sweden 2011 TRITA-EE 2011:017 KTH School of Electrical Engineering ISSN 1653-5146 SE-100 44 Stockholm ISBN 978-91-7415-900-4 SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 25 mars 2011 klockan 10.15 i Seminarierummet, Teknikringen 33, 1 tr, Kungl Tekniska högskolan, Stockholm. © Nadejda Jäverberg, mars 2011 Tryck: Universitetsservice US AB iii Abstract In this work dielectric properties of the poly(ethylene-co-butyl acrylate) filled with alumina nanoparticles are evaluated. These nanocomposite mate- rialsweremanufacturedatthedepartmentofFibreandPolymerTechnology, KTH. This study is limited to the properties of general importance for the AC ap- plications. The dielectric permittivity of the nanocomposite materials was studiedasafunctionoffillersize,fillercontent,coating,temperatureandair humidity used for conditioning of the samples. The ultimate goal with this projectistodescribetheinfluenceofmaterialcomposition,temperatureand air humidity on the dielectric properties and model these dependencies. In this thesis the experimental setup for voltage endurance testing of the nanocomposites, namely studying applied voltage frequency dependence of partial discharges in electrical trees, with a possibility of following electrical treeing optically, was developed and described. Thedielectricspectroscopymeasurementswereperformedonthoroughlydried nanocomposites - so-called dry DS study. It was shown that the experimen- tal data can be fitted with Havriliak-Negami approximation, which justifies the correctness of the measurement results. It has been shown that adding nanoparticlestotheEBAmatrixchangesthelowfrequencydispersionsignif- icantly for the dried samples. It was also indicated that the particle coating usedhasverylowimpactontheresultingpermittivityofthethoroughlydried samples. From the dry DS studies it was suggested that the main cause of the scattering in data between the dry samples is most likely the influence of the material inhomogeneity and possibly the moisture absorption. This leadstoapossibilityofusingdielectricspectroscopyasatoolforprobingthe dispersion of nanoparticles in the polymer matrix. Thedielectricspectroscopymeasurementswerealsocarriedoutonthenanocom- positesconditionedintheenvironmentswithdifferenthumiditylevelsofairin order to study the influence of absorbed water on the dielectric permittivity - so-called wet DS study. From the wet study it was shown that for the wet samples the amplitude of the loss peak is defined by the filler size, filler con- tent and coating used; while its position in frequency domain is determined by the coating and the humidity level used for conditioning. Keywords: nanocomposites, poly(ethylene-co-butyl acrylate), EBA, alu- mina, dielectric permittivity, absorbed water, humidity, temperature, dielec- tric spectroscopy, partial discharge, electrical treeing iv Sammanfattning Inomdettaarbeteevaluerasdedielektriskaegenskapernahosensampoly- meravetenochbutylakrylatfylldmedAl2O3nanopartiklar.Dessananokom- posita material framställdes på avdelningen för Fiber och Polymerteknologi, KTH. DennastudieavgränsastillegenskapernaavgenerelltintresseförACtillämp- ningar. Den dielektriska permittiviteten av nanokomposita material studer- adessomfunktionavpartiklarnasstorlek,fyllhalt,ytbehandling,temperatur samt relativa luftfuktigheten under provbitarnas konditionering. Det ultima- ta syftet med det här projektet är att beskriva inverkan av materialens sam- mansättning,omgivningenstemperaturochluftfuktighetpådielektriskaegen- skaper samt modellera dessa beroenden. Ennymetodförundersökningavnanokompositernasspänningensuthållighet harutvecklats,nämligenundersökningenavdenpålagdaspänningensfrekvens- beroendeavpartiellaurladdningarielektriskaträd,medenmöjlighetattfölja tillväxten av elektriska träd optiskt. De dielektriska spektroskopimätningarna utfördes på torra nanokompositer - så kallad torr DS studie. Det visades att experimentella data kan an- passas med Havriliak-Negamis ekvation, vilket stärker mätdatas korrekthet. Det visades att tillsättningen av nanopartiklar till EBA matrisen ändrar den lågfrekventa dispersionen signifikant för torra provbitar. Det indikeras även att partiklarnas ytbehandlingen har väldigt liten betydelse för de torra provbitarnaspermittivitet.DetantydesidentorraDSstudienattdenstörsta anledningen för spridningen i de torra provbitarnas mätdata är högst san- nolikt inverkan av materialens inhomogenitet och möjligen absorberad fukt. Detta leder till en möjlighet att använda dielektrisk spektroskopi som ett verktyg för utforskningen av nanopartiklarnas dispersion i polymermatrisen. De dielektriska mätningarna utfördes även på nanokompositer konditioner- ade i luft med olika relativ luftfuktighet med avsikt att studera inverkan av absorberat vatten på dielektrisk permittivitet - så kallad våt DS studie. Det visades i den våta studien att förlusttoppens amplitud för de våta provbitar- na definieras av partiklarnas storlek, fyllhalt samt ytbehandling; medan dess position i frekvens bestäms av partiklarnas ytbehandling och den relativa luftfuktigheten under konditioneringen. v Acknowledgements First and foremost I would like to thank my supervisor Hans Edin for all the sup- port, help and encouragement during the course of this project. Mydeepthanksgotoallthemembersofthenano-projectgroup: PatriciaNordell, Sohail Nawaz, Henrik Hillborg, Bruska Azhdar and Ulf W. Gedde for providing feedback and sharing valuable knowledge that helped me greatly along the way. My special thanks go to Patricia Nordell for putting up with my endless questions and fruitful discussions. I am very grateful to Nathaniel Taylor, Cecilia Forséen and Valentinas Dubikas for makingmefeelwelcomeinthehigh-voltageresearchgroupwhenIstartedwiththis project, and to Xiaolei Wang, Mohamad Ghaffarian Niasar, Respicius Clemence, Håkan Westerlund and Roya Nikjoo for creating a wonderful and friendly atmo- sphere to work in. My special thanks go to Nathaniel Taylor for introducing me to the mysterious world of the IDA and all the discussions, sharing ideas and also for posting the latex cheat sheet on my notice board (even though it was done in a very sneaky way in the night) that helped me greatly with writing this thesis. Iwouldalsoliketothankallthemembersofthereferencegroupinthenano-project -ThomasLiljenberg(ABB)andClairPitois(ABB)forhelpingmetobecomemore goal-orientedandfocusedinmywork;SvenJansson(Elforsk)foralwaysbeingkind and supportive; Eva Malmström (KTH), Christian Andersson (Ericsson), Niclas Schönborg (Svenska Kraftnät) and Erik Perzon (Borealis) for providing feedback and guidance. The project was funded by the Swedish Energy Agency, Elforsk AB, ABB AB, Swedish Railway Company, Ericsson Network Technologies and Borealis via the ELEKTRA program, grant 36028, and is gratefully acknowledged. Last but not the least I would like to thank my family for all the encouragement and support they’ve given me. Nadja Jäverberg Stockholm, March 2011 vi List of publications: This thesis is based on the following papers: I "Applied Voltage Frequency Dependence of Partial Discharges in Electrical Trees", N. Jäverberg and H. Edin, Proceedings of the 21st Nordic Insulation Symposium, Göteborg, Sweden 2009 II "DielectricPropertiesofAlumina-filledpoly(ethylene-co-butylacrylate)Nanocom- posites", N. Jäverberg, H. Edin, P. Nordell, H. Hillborg, B. Azhdar and U.W. Gedde,2010AnnualReportConferenceonElectricalInsulationandDielectric Phenomena, West Lafayette, USA, 2010 III "DielectricPropertiesofAlumina-filledpoly(ethylene-co-butylacrylate)Nanocom- posites, part I - dry studies", N. Jäverberg, H. Edin, P. Nordell, S. Nawaz, H. Hillborg, B. Azhdar and U.W. Gedde, submitted to IEEE Trans. Dielectr. Electr. Insul. IV "DielectricPropertiesofAlumina-filledpoly(ethylene-co-butylacrylate)Nanocom- posites, part II - wet studies", N. Jäverberg, H. Edin, P. Nordell, S. Nawaz, H. Hillborg, B. Azhdar and U.W. Gedde, submitted to IEEE Trans. Dielectr. Electr. Insul. Contents Contents vii 1 Introduction 1 1.1 Need of new materials . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Nanocomposites: historical perspective . . . . . . . . . . . . . . . . . 2 1.3 Scope and aim of the project . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Author’s contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Material description 7 2.1 Materials and manufacture data . . . . . . . . . . . . . . . . . . . . 7 2.2 Manufacturing process . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Summary of material characterization . . . . . . . . . . . . . . . . . 9 2.4 Experimental matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Experimental evaluation methods 11 3.1 Dielectric spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Voltage endurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Experimental 17 4.1 Dielectric spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Voltage endurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Summary of publications 35 6 General conclusions and future work 37 A Dry DS - Loss Tan δ 39 B Wet DS - Loss Tan δ 45 Bibliography 47 vii Chapter 1 Introduction 1.1 Need of new materials Electric insulation is of major importance in any electrical installation. Its main function is to isolate two different electric potentials. A good electric insulation material should be able to withstand 1. electrical stress (i.e. high breakdown strength, voltage endurance) 2. thermal stress (i.e. high fire point, low thermal expansion coefficient, etc.) 3. mechanical stress (i.e. supporting mechanical load) 4. ambient conditions (i.e. insulation material cannot be a health hazard, has to be resistant to weather conditions, etc.) Also, a low value of dielectric loss is desirable. Normally insulation material is exposed to all of the above mentioned stresses which, in general, depend on one another, e.g. both electrical and mechanical properties depend on temperature. A lot of research directed at improving material properties was done over the years. In the case of electrical insulation the particular interest was directed at the pu- rification of the materials for enhancing electrical properties. On the other hand such material properties as mechanical and thermal can be improved by filling the material with small particles. The classical approach was filling materials with micro-sizedparticleswhichgenerallyresultedinenhancingmechanicalandthermal properties, but regretfully had negative impact on insulating properties. There are theoretical models available for treating of micro-composite materials that agree very well with experimental results, such as for example Maxwell-Garnett mixing rule [1]. These mixing rules are based on a homogeneous mixture of inclusions of different shapes and orientation in the host matrix. However, the next generation of fillers, namely nano-sized inorganic fillers, show promise for dielectric and insulation material properties. One interesting fact is 1 2 CHAPTER 1. INTRODUCTION that the dielectric permittivity of a nano-composite sometimes decreases in com- parisontothebasematrix, whiletheresultingpermittivity ofamicro-composite is expected to be higher than that of the host polymer. This fact indicates that the nanocomposites do not behave as classical filled heterogeneous materials. There exist a large number of examples that illustrate enhancement of the di- electric properties for the materials filled with nano-particles, for instance [2], [3], [4]. The positive outcome is attributed to the role of the interface between the nano-fillers and the host polymer matrix [5], [6]. Achieving good dispersion of nanofillers in the host polymer matrix is one of the great challenges in manufac- turing of nanocomposites; another issue is understanding the influence of surface modificationofnanofillersonmaterialproperties. Theultimategoalwithnanocom- posites is tailoring material properties for engineering applications. In this work a modifiedPEhasbeenselectedasthebasematrix,namelyEBA-anEthylene-Butyl Acrylate copolymer with 13 wt% butyl acrylate content, with the expectation that using polar butyl acrylate groups will improve the particle dispersion. Alumina nanoparticles are used as a filler in this study, as aluminium oxide is chemically inert, non-toxic and widely used in industrial applications. The dielectric constant of alumina is approimately 10 at 50 Hz with electrical resistivity higher than 1014 Ohm·cm. 1.2 Nanocomposites: historical perspective The word "nanocomposite" is a composition of two words: "nano", which indicates that the filler size has to be below 100 nm (at least in one dimension), and the word "composite", which suggests that the material in question has at least two distinct constituents. A lot of research is carried out on polymer nanocomposites nowadays [7], [5], [8], [9], but the concept is by no means new. One example from ancient times is the famous Lycurgus cup, illustrating that nanocomposites have been successfully manufactured already in the 4th century AD. The uniqueness of the cup is due to the dichroic effect exhibited by the glass of the cup: the glass has greenish colour in transmitted light and reddish colour in reflected light. This effect is believed to originate from the finely dispersed silver-gold alloy (7:3) nanoparticles with diameters ranging between 50 to 100 nm; gold nanoparticles causing reddish colour in transmission while silver nanoparticles being responsible for greenish reflection [10]. AnotherexampleisthelustretechniquepopularduringtheRenaissanceperiod. Lustreisametallicdecorationwhichcontainssuchsubstancesassilver,copperand iron oxide applied on a ceramic. It is concluded that adding nanoparticles with diameters ranging between 30 to 100 nm is responsible for the rich colors and the iridescent effects typical to the lustre decorations produced by Italian masters. It is suggested that adding silver and copper nanoparticles together produces gold colour, while adding only copper nanoparticles results in ruby-red colour [11]. Both of the abovementioned examples are colloids. A colloidal system is de-

Description:
nanocomposites, namely studying applied voltage frequency dependence of of 3 µm provided by Ogura Jewel Company were used. Future work.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.