ebook img

Dielectric breakdown in spin polarized Mott insulator PDF

0.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dielectric breakdown in spin polarized Mott insulator

Dielectricbreakdown inspinpolarizedMottinsulator Zala Lenarcˇicˇ1 and Peter Prelovsˇek1,2 1J. Stefan Institute, SI-1000 Ljubljana, Slovenia and 2Facultyof Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia NonlinearresponseofaMottinsulatortoexternalelectricfield,correspondingtodielectricbreakdownphe- nomenon,isstudiedwithinofaone-dimensionalhalf-filledHubbardmodel.Itisshownthatinthelimitofnearly spinpolarizedinsulatorthedecayrateofthegroundstateintoexcitedholon-doublonpairscanbeevaluatednu- mericallyaswelltohighaccuracyanalytically.Resultsshowthatthethresholdfielddependsonthechargegap asF ∝∆3/2. Numericalresultsonsmallsystemsindicateonthepersistenceofasimilarmechanismforthe th 2 breakdownfordecreasingmagnetizationdowntounpolarisedsystem. 1 0 PACSnumbers:71.27.+a,71.30.+h,77.22.Jp 2 n Thenonlinearresponsetoexternalfieldsandmoregeneral Inthefollowingwestudytheprototype1DHubbardmodel, a J nonequilibriumpropertiesofstronglycorrelatedelectronsand 8 Mottinsulatorsinparticular[1]aregettingmoreattentionin H = t (eiφc† c +H.c)+U n n , (1) 1 recent years, also in connectionwith powerfulnovelexperi- − i+1,σ iσ i↑ i↓ iσ i mentaltechniques,e.g. thepump-probeexperimentsonMott X X ] l insulators [2], as well as novel systems, the prominent ex- withperiodicboundaryconditions(p.b.c.) wherec† ,c are e iσ iσ ample being the drivenultracoldatoms within the insulating - creation(annihilation)operatorsforelectronsatsiteiandspin r phase [3]. In this connection, one of the basic phenomena t σ = , . TheactionofanexternalelectricfieldF isinduced s to be understood is the dielectric breakdown in Mott insu- ↑ ↓ viathe Peierlsphaseφ (vectorpotential)andits timedepen- . at lators, studied experimentallyin effectivelyone-dimensional dence, i.e. φ˙(τ) = e0F(τ)a0/~. Furtheron we use units m (1D) systems more than a decade ago [4]. The concept of ~ = e0 = a0 = 1, as well as we put t = 1 defining the Landau-Zener(LZ)single-electrontunneling[5,6]asastan- unitofenergy. Insuchamodelweinvestigatefinitesystems - d dardapproachtodielectricbreakdownofbandinsulators[7] of length L and at half-filling N +N = L but in general u d n isnotstraightforwardtogeneralizetocorrelatedelectrons[8– at finite total spin, Sz = (N N )/2 and magnetization o 10]. Theoreticaleffortshavebeensofarrestrictedtothepro- m=Sz/L. u − d c totype Hubbard model at half-filling. In 1D numerical ap- [ Letusfirstconsidertheproblemofasingleoverturnedspin, proaches have given some support to analytical approxima- i.e. ∆Sz =L/2 Sz =1. Here,basiswavefunctions ϕ 1 tionsforthemostinterestingquantitybeingthethresholdfield − | jmi v correspondtoanemptysite(holon)atsitej andadoublyoc- F anditsdependenceonthechargegap∆[9],typicallyre- 7 th cupiedsite(doublon)atsitem. Takingintoaccountthetrans- vealing a LZ type dependence F ∆2. Differentdepen- 1 th ∝ lationalsymmetryofthemodel(1)withp.b.c.(evenwithtime 8 denceisfoundnumericallywithinthedynamical-mean-field- dependent φ(τ)) at given (total) momentum q = 2πm /L 3 theoryapproach[11]asrelevantforhighdimensionsD 1. q 1. ≫ the relevant basis is |Ψlqi = (1/√L) jeiqj|ϕj,j+li,l ∈ [0,L 1]. At fixed φ adiabatic eigenfunctions can be then 0 search−edintheform ψ = d Ψj Pleadingtothe eigen- 2 InthisLetterweapproachtheproblemofadielectricbreak- | i j j| qi 1 valueequation, downfrom a partially spin polarizedMott insulator. We use P : v thefactthatthegroundstate(g.s.) ofthe1DHubbardmodel 1 1 1 Xi isinsulatingatanyspinpolarizationwiththechargegapmod- − U = L E U +2(cos(q′ φ)+cos(q′ φ q)). estlydependentonthemagnetizationm. Inparticular,asin- q′ − − − − r X (2) a gle spin excitation in fully polarized system m 1/2, i.e. ∆S = 1 state, canbe studiedexactlynumerically∼aswellas In the limit L the g.s. energy E0 representing the → ∞ holon-doublon(HD) boundstate can be expressed explicitly tohighaccuracyanalytically.Therelevantmechanismforthe decay of the g.s. under constant external field F is the cre- as E0 = U (U2 + 16cos2(q/2))1/2. We note that (in − spite of the q-dependence) g.s. states for all q are noncon- ationof holon-doublon(HD) pairs. We show thatdueto the ducting since from Eq. (2 ) it follows that the charge stiff- dispersion-lessg.s. thesimilaritytotheLZtunnelingisonly partialandleadstoadifferentscalingF ∆3/2. Furtheron ness 0 ∂2E0/∂φ2 0 for L . On the other th D ∝ → → ∞ ∝ hand, excited states form a continuum with lower edge at we study numerically on small systems also the model with ∆S > 1, m < 1/2 in a finite field F. Results indicate that E1 =U 4cos(q/2). − thedecaymechanismremainsqualitativelyandevenquantita- Since φ(τ) conserves total q we furtheron consider only tivelysimilaratpolarizationsm<1/2,inparticularforlarger solutions within the q = 0 subspace representing the ab- ∆wherebythemostinterestingcaseisclearlytheunpolarized solute g.s. wavefunction |0i with d0j = Ae−κ|j|eiφj and m=0system. A = √tanhκ. Here, the charge gap ∆ = E1 E0 and − 2 therelatedg.s. localizationparameterκaregivenby Here,wecanalreadyrealizesomeessentialdifferencestothe usual concept of of LZ tunneling, i.e., Φ and Eq. (5) do ∆= 4+ U2+16=4(coshκ 1). (3) k − − not favor transitions to lowest lying excited state but rather When we consider theptime-dependentφ(τ) we have to deal to k κ/√3, hencethe reductionto a two-levelproblemis ∼ at finite L with adiabatic states E (φ) as, e.g., shown in notappropriate. n Fig. 1 for finite L. At finite L 1/κ E0 is essentially φ- Therateofak(τ)followingfromEqs.(5),(7)isnotsteady. ≫ independent but the same holds as well for lowest excited SinceweareinterestedinlowF weaverageitovertheBloch states E ,n & 1 which makes an usual application of two- periodτ =2π/F togeta¯=a (τ )whichisapproximately n B k B level LZ approach not straightforward to apply. If we sup- thesameformajorityofk(fixingherek =π), pose that due to field F > 0 the transition probability be- tweenneighbouringstatesishigh(neglectingfinitesizegaps AU π 1 ′ i ξ a¯= dξ exp dξ′ω (ξ′) (8) π between them) excited states are well represented by ’free’ −√L Z−π (cid:18)ωπ(ξ)(cid:19) F Z−π ! HDpairstateswith iAU π i ξ 1 2π dξexp dξ′ω (ξ′) , (9) dkj = √Leikj, ǫk =U−4cos(φ−k), k = L mk. (4) ∼ F√LZ−π F Z−π π ! As shown further relevant transitions due to time-dependent afterper partesintegrationofEq. (8) andneglectingthe first φ(τ) happento effectivestates k with m 1 since the fastoscillatingpart,smalleralsoduetoanadditionalprefactor k | i | | ≫ g.s. 0 iswelllocalized. F. FinalsimplificationforsmallFcanbemadebyreplacing | i coshκ cosξ ξ2/2+ ∆/4 and consequently extending 8 − ∼ integrationsinEq.(9)toξ = . Thisleadstoananalytical expressionforthedecayrateΓ±,∞definedby a0 2 exp( Γτ) 6 whereΓ=La¯2/τ , | | ∼ − B | | 4 ∆3/2B(∆) √2∆3/2 B(∆) (2∆)3/2 En Γ= K21 exp 2 3πF 3 3F !∼ √8 (cid:18)− 3F (cid:19) (10) 0 whereK1/3(x)isthemodifiedBesselfunctionandB(∆) = ∆(∆+8)3/2/(∆+4), and the last exponentialapproxima- -2 tion is valid for small enough Γ. The main conclusion of 0.0 0.2 0.4 0.6 0.8 1.0 the analysis is that Γ in Eq. (10) depends on ∆3/2/F un- Φ(cid:144)2Π like usual LZ theory applications [8, 9] yielding ∆2/F. As thethresholdfieldisusuallydefinedwiththeexpressionΓ Figure 1. Energy levels En (in units of t) vs. phase φ for holon- exp( πF /F),Eq.(10)directlyleadsF =(2∆)3/2/(3π∝). doublon pair states in the system with L = 21 sites and U = 4. − th th It is straightforward to verify the validity of approxima- Thicklinerepresentstheg.s. andtheeffectiveHDpairstatedisper- sion. tionsforNd = 1viaadirectnumericalsolutionofthetime- dependentSchro¨dingerequation(TDSE)withφ=Fτ within Letusnowconsiderthedecayoftheg.s. 0 afterswitch- thefullbasisatq = 0andfinitebutlargeL >100. Timede- | i ing constant field F(τ > 0) = F,φ = Fτ. We present an pendenceoftheg.s. weight a0(τ)2 ispresentedinFig.2for | | analysisfortheinitialdecaywheremostweightisstillwithin typicalcaseU =4anddifferentfieldsF =0.2 0.5.Results − the g.s., i.e. a0(τ) an6=0(τ). In such case the excited for the case of an instantaneous switching F(τ > 0) = F | | ≫ | | stateamplitudetime-dependencean(τ)isgivenby (shown for F = 0.5) reveal some oscillations (with the fre- τ τ′ quencyproportionalto the gap ∆) butotherwise clear expo- a (τ)= F dτ′Φ (τ′)exp(i ω (τ′′)dτ′′), (5) nential decay with well defined Γ. In order to minimize the n n n − Z0 Z0 fast-switching effect we use in Fig. 2 and furtheron mostly whereΦn = n∂/∂φ0 andωn(τ)=En(φ) E0. smooth transient [11], i.e., field increases as F(τ < 0) = h | | i − Analytically progress can be made by using effective HD F exp(3τ/τ )toitsfinalvalueF(τ >0)=F. B states k as approximate excited states with ω (ξ) = ǫ InFig.3wecompareresultsforΓasobtainedviathreedif- k k | i − E0 =4(coshκ cosξ),ξ =Fτ k. Byusingtherelation ferentmethods:a)directnumericalsolutionofTDSE,b)ana- − − lyticalapproximationwithanaveragedecayrateintofreeHD hk|0iωk =hk|H0+U −H|0i=Uhk|n0↓|0i=UA/√L, states,numericallyintegratingEq.(8),andc)theexplicitex- (6) pression(10)whereadditionalsimplificationoftheparabolic whereH0denotesonlykineticterminEq.(1),onecanexpress dispersion of excited states is used. The agreementbetween Φ inEq.(5)as k differentmethodsissatisfactoryessentiallywithinthewhole ∂ ∂ UA∂ω−1 regimeofsmallΓ anddeviationsbetweenanalyticalandnu- Φ = k 0 = k 0 = k . (7) k h |∂φ| i ∂φh | i √L ∂φ mericalresultsbecomevisibleonlyforlargeΓ 0.1. More- ∼ 3 0.4 F=0.5 ofmagnetization1/2> m≥0(relevant1≤Nd ≤L/2)for two casesofU = 4,10,respectively,andthespanofappro- priatefieldsF. Examplesarechosensuchtorepresentcharge 0.3 2 gap (for a single HD pair) being small ∆ 1.3 < W and 0 ∼ a large∆ 6.5> W,respectively,relativetothenoninteract- F=0.4 n 0.2 ingband∼widthW =4. l - 0.1 F=0.3 m»1(cid:144)2 F=0.8 0.6 m=3(cid:144)8 F=0.2 0.0 Nd m=1(cid:144)4 -0.2 0.0 0.2 0.4 0.6 (cid:144) m=0 2 Τ(cid:144)ΤB a0 0.4 F=0.6 Figure 2. (Color online) a) Ground state weight ln|a0|2 vs. time -ln 0.2 τ/τB forU = 4anddifferentfieldsF = 0.2−0.5. ForF = 0.5 F=0.3 thecomparisonofresultsforsmoothlyandinstantaneouslyswitched F(τ)ispresentedwhileforF <0.5onlysmoothswitchingisused. 0. 0. 0.2 0.4 Τ(cid:144)Τ B over, results confirm the expected variation lnΓ 1/F es- ∝ sentiallyinthewholeinvestigatedrangeofF. Figure4. (Coloronline)Normalizedg.s. weight(1/Nd)ln|a0|2vs. timeτ/τ forU = 4andfieldsF = 0.3,0.6,0.8,forvariousspin B states1≤N ≤L/2. d 0.1 0.04 m»1(cid:144)2 F=2.6 G m=3(cid:144)8 0.01 m=1(cid:144)4 d TDSE N m=0 (cid:144) HDnumerical 2 HDanalytical a0 0.02 F=2.2 0.001 n 2. 3. 4. -l F=1.6 1(cid:144)F 0 0. 0.2 0.4 Figure 3. (Color online) Ground state decay rate Γ (log scale) vs. Τ(cid:144)Τ 1/F forU = 4asevaluatedbydirectnumericalsolutionofTDSE B (fullline),decayintofreeHDstates,numericallyintegratingEq.(8) (dottedline),andanalyticalexpression,Eq.(10)(dashedline). Figure 5. (Color online) The same as in Fig. 4 for U = 10 and F =1.6,2.2,2.6. Onecanassumethatasimilarmechanismofthedielectric breakdownvia the decayinto freeHD pairsremainsvalidat The main conclusion following from Figs. 4,5 is that the finite deviationsNd > 1 andm < 1/2. Inorderto test this g.s.weight a0 2indeeddecaysproportionaltoNdconfirming | | scenariowe performthe numericalsolutionofTDSE forthe the basic mechanismof the field-inducedcreationof (nearly model,Eq.(1), withthefinitefieldF(τ). Calculationforall independent)HDpairs. ThedecayrateΓ definedas a0 2 | | ∝ Sz sectorscoveringthewholeregime0 m < 1/2areper- exp( ΓN τ) is only moderately dependent on N and m. d d ≤ − formedonfiniteHubbardchainswithuptoL=16sitesusing ResultsconfirmthatΓisessentiallyindependentofN inwell d theLanczosprocedurebothforthedeterminationoftheinitial polarized systems with m 1/4, which is compatible with ≥ g.s. wavefunction 0 aswellasforthetimeintegrationofthe independent decay into low concentration of HD pairs. For | i TDSE [14] within the full basis for given quantum numbers larger U = 10 in Fig. 5 the invariance of Γ extendseven to N ,N ,q =0reachinguptoN 107basisstates. Weuse unpolarizedsituationm = 0(N /L = 1/2)forintermediate d u st d ∼ everywheresmoothtransientforthefieldF(τ). Sincethede- fieldsF 2.2. cayrateoftheg.s. weight a0 2 isexpectedtoscalewiththe There≥are some visible deviations at m 1/4 for weak- | | ≤ numberofoverturnedspinsN therelevantquantitytofollow est fields both in Fig. 5 for F = 1.6 and even more for d andcompareis(1/Nd)ln a0 2(τ). smaller U = 4 and F = 0.3 in Fig. 4, indicating on larger | | In Figs. 4,5 we present numerical results for time depen- Γ and correspondinglyfaster decay of unpolarizedg.s. with denceofnormalizedg.s.weightln a0 2/Ndasobtainedviaa m = 0 relative to nearly saturated m 1/2. Part of | | ∼ directsolutionoftheTDSEforL = 16withthewholerange this enhancement of Γ can be attributed to the dependence 4 inparticularofanunpolarizedg.s. [10,11]. 8 HD LZ ìæ Thecase of a nearlypolarizedstate N = 1describesthe d m»1(cid:144)2 ìæ à mechanism of the field-induced decay of the g.s. into sin- 6 m=1(cid:144)4 ìæ à gle HD pair. Here one can follow differences to usual LZ- Fth4 m=0 ìæ à type approaches: a) the g.s. is localized and dispersionless æ ìæ à withintheinsulator,b)the transitionisnotbetweentwo iso- ì à 02 ææææàæìææàìæ àìæ àìæ à lftairootenmdstlEoeqvlose.wls(e5bs)tu,(et8xr)caittthheeadrtstmtaotaeatsr,icxco)neiltneinsmtueeuanmdts,ofdmeooxranecoottveefxarcviiottersfotsrltalaontwessis-, 0 2 4 6 8 onecanwelluseeffectivefreeHDstates,d)dispersionofef- D fectiveHDstatesisunlikeinLZapplicationsnothyperbolic, e.g., ω (k2 +κ2)1/2 butratherparabolicω = k2 +κ2 k k ∝ Figure6.(Coloronline)ThresholdfieldF vs.chargegap∆fordif- which is presumablythe main origin for qualitatively differ- th ferentmagnetizationsm∼1/2(givenbyNd =1)andm=1/4,0 entbehaviorofthethresholdfieldFth ∆3/2whichisafinal asobtainednumericallyforL = 16. Fullcurve(HD)representthe manifestationofthedistinctiontousu∝alLZapplications. On analyticalapproximation,Eq.(10),whilethedashedcurveistheLZ the other hand there are some similarities. In particular the approachresultfromRef.[9]. analytical expression for the average transition rate, Eq. (9), wherematrixelementisintegratedout,appearsanalogousto two-levelproblemandreadyforphase-integraltransformation of the charge gap on the magnetization ∆(m). The ther- intoimaginaryplaneasusedoriginallybyLandau[5]andthen modynamic (L ) value ∆0 = ∆(m = 0) is known generalized[17, 18] and appliedaswell to breakdownprob- → ∞ via the Bethe Ansatz solution given by the equation ∆0 = lem [10, 13]. Still it is straightforwardto verify that for the (16/U) ∞dx√x2 1/sinh(2πx/U) [15, 16]. Values for 1 − levelsunderconsiderationωkdonotsatisfycriteriaforitsap- ∆(m 1/2) as given by Eq. (3) are somewhat larger than plication,buttheanalogyratheremergesthroughtheapplica- ∼R ∆0 with the relative difference becoming more pronounced tionofthesteepestdescentapproximationtoEqs.(9). for U < 4. Still taking into accountactual ∆(m) some en- The picture of the decay of the driven Mott insulator into hancement seems to remain at m 0 at least for weaker ∼ HD pairs remains attractive for magnetization approaching fields F and smaller U. This could indicate that the decay the unpolarized g.s. There seem to be two characteristic into HD pairsare notindependentprocessesbutcorrelations lengthscalescontrollingthemechanism,theHDpairlocaliza- duetofiniteconcentrationofN /Lenhancedecay. d tionlengthζ = 1/κandtheStark (Bloch)localizationscale FinallyletusconsiderthethresholdfieldforthedecayF th L =8/F.Ourresultsindicatethatforlarger∆(smallζ)and asdefinedagainbyΓ exp( πF /F). Wepresentresults S ∝ − th well localized HD pairs the mechanism of decay into nearly in Fig. 6 for F as function of the gap ∆. To extract F th th independentHDpairsremainsatleastqualitativelyvalid. On vs. ∆weusenumericaldataforΓ(F)obtainedfromnumer- the other hand, we find indications that for smaller ∆ and cichaalrg|ae0g|2a(pτ∆) a(sm,)e.wg.e,suhsoewfonrimnFigs1./22,4a,n5d.mFo=rth1e/4reEfeqr.e(n3c)e, weaker F (larger LS), the decay is enhanced, i.e., pointing ∼ intothedirectionofmorecollectivedrivenexcitationsfavored while form = 0we use exact∆0. Somedeviationbetween also in the interpretationof experiments[4]. It should be as m 1/2 and m = 1/4 results can be still attributed to ac- ∼ wellpointedoutthatthephenomenonofHDpairgeneration tually slightly smaller gap for the latter magnetization. For is not particularly specific to 1D systems discussed here but comparisonwe plot also the analyticalresult emergingfrom cangeneralisedtohigherdimensionalMottinsulatorsaswell. Eq. (10), F ∆3/2, as well as the dependence following th from the LZ a∝pproach [9] with F = ∆2/8. From Fig. 6 This work has been supported by the Program P1-0044 th and the project J1-4244 of the Slovenian Research Agency we concludethatthegeneraltrendF (∆) isquite wellrep- th (ARRS). resented by the single HD pair result which deviates signif- icantly from the LZ dependence at least for larger ∆ > 6. At the same time, we should note that our numerical results in the range1 < ∆ < 2.1agree also well with data analyz- ingnumericallytheg.s. decayusingthet-DMRGmethod(at [1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, m=0)forthesamemodelbutbiggerL 50[9]. 1039(1998). ∼ In conclusion, we have presented an analysis of the di- [2] H.Okamoto,H.Matsuzaki,T.Wakabayashi,Y.Takahashi,and electric breakdown within the Mott-Hubbard insulator start- T.Hasegawa,Phys.Rev.Lett.98,037401(2007). [3] N.Strohmaieretal.,Phys.Rev.Lett.104,080401(2010). ingfromaspinpolarizedgroundstate. Suchanapproachhas [4] Y. Taguchi, T. Matsumoto, and Y. Tokura, Phys. Rev. B 62, clearlyanadvantagesincetheproblemcanbesolveduptode- 7015(2000). sired accuracynumericallybut as well captured analytically. [5] L.Landau,Sov.Phys.1,89(1932). Assuchthesituationcanserveatleastaswellcontrolledtest [6] C.Zener,Proc.R.Soc.A137,696(1932). formoredemandingsituationsofanarbitrarymagnetization, [7] C.Zener,Proc.R.Soc.A143,523(1934). 5 [8] T. Oka, R. Arita, and H. Aoki, Phys. Rev. Lett. 91, 066406 [12] Q.NiuandM.G.Raizen,Phys.Rev.Lett.80,3491(1998). (2003). [13] T.Oka,arXiv11056.3143. [9] T.OkaandH.Aoki,Phys.Rev.Lett.95,137601(2005). [14] forareviewseee.g.P.PrelovsˇekandJ.Boncˇa,arXiv1111.5931. [10] T.OkaandH.Aoki,Phys.Rev.B81,033103(2010). [15] E.H.LiebandF.Y.Wu,Phys.Rev.Lett.21,192(1968). [11] M. Eckstein, T. Oka, and P. Werner, Phys. Rev. Lett. 105, [16] A.A.Ovchinnikov,Zh.Eksp.Teor.Fiz57,2137(1969). 146404(2010). [17] A.M.Dykhne,Sov.Phys.JETP14,941(1962). [18] J.P.DavisandP.Pechukas,J.Chem.Phys.64,3129(1976).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.