ebook img

Diel pattern of activity ofLestes macrostigmaat a breeding site (Odonata: Lestidae) PDF

2011·0.32 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Diel pattern of activity ofLestes macrostigmaat a breeding site (Odonata: Lestidae)

InternationalJournalofOdonatology Vol.14,No.2,June2011,175–191 Diel pattern of activity of Lestes macrostigma at a breeding site (Odonata: Lestidae) PhilippeH.Lambret*andAnthonyStoquert MaraisduVigueirat,F-13104Mas-Thibert,France (Received1March2011;finalversionreceived25May2011) Monitoringmethodsalwaysrecommendgatheringdataduringthemaximalactivityofadults.Hencemon- itoringthethreatenedLestesmacrostigmarequiresknowledgeofitsactivitypattern.Dragonfly“activity” isambiguousanditsintensitycanbeassessedindifferentways,includingbythethresholdofresponse toapredatorstimulus,i.e.“awareness”.WestudiedthedailypatternofactivityofL.macrostigmaat thebreedingsitebymonitoringthefrequenciesofbehaviours,especiallythoseofdifferentflights,flight durationandspeed,andawareness.Wealsoassessedtheabundancetogetherwiththeprobabilitytodetect thespecies.Thepatternofbehaviourwascharacterizedbyreproductionbutalsofeedingandroosting. Flightactivitywasmoreintenseinearlymorningformales,aroundmiddayforpairs,andintheevening formalesandfemales.Flightspeedwashighestaroundmidday.Thesepatternswererelatedtoambient temperaturesandtoatrade-offbetweentheneedstomateandtofeed.Awarenesswasalmostconstantall daylong,suggestingnewinsightsondailyactivityvariationsintheOdonata,especiallywhenperching. Slightdifferencesbetweenmalesandfemalesindicatedoppositetrends.Thepatternofabundancewas singularlytrimodal.Thisabundancedependsonthetruepresenceatthebreedingsiteandtoaprobabilityof detection.Thetimingofmonitoringisthereforenottoberelatedtotheactivityperse,buttotheabundance ofadults.WerecommendgatheringdataonL.macrostigmaduringearlymorning. Keywords: Lestesmacrostigma;Odonata;activity;dielpattern;flight;reproductivebehaviour;postural adaptation;detectionprobability;survey;monitoring Introduction Lestes macrostigma (Eversmann, 1836) is a threatened stenotopic species (see Lambret, 2010; Lambret, Cohez & Janczak, 2009) inhabiting a disappearing ecosystem in the Mediterranean (Zacharias&Zamparas,2010).Lambret(2010)underlinedthat,acrossitsrange,twoofthemajor conservationactionsforthisspeciesaretoimproveknowledgeofitsdistribution–usingsurveys– andtoassesswhetherpopulationtrendsareincreasingordecreasing–usingmonitoringbasedon thetransectmethod(e.g.Pollard&Yates,1993)ortheoccupancymethod(McKenzieetal.,2002). Withinentomologicalsurveyandmonitoring(ESM)itisusuallyrequiredtocollectdatawithin thepeak(s)ofactivityoftheconsideredtaxon(Odonata:Ketelaar&Plate,2001;Smallshire& Beynon2010;Rhopalocera:Manil&Henry2007)andwhenESMfocusesonasinglespecies,the *Correspondingauthor.Email:[email protected] ISSN1388-7890print/ISSN2159-6719online ©2011WorldwideDragonflyAssociation DOI:10.1080/13887890.2011.592134 http://www.informaworld.com 176 P.H.LambretandA.Stoquert dailytimespanisrestrictedbyspecificactivitypattern(Thompson,Purse&Rouquette,2003). Identifyingapeakofactivityimpliesthatonecanmeasureitsintensity. Howeverwhatexactlyconstitutes“activity”isnotalwaysclearlydefinedwithinESMmethods (Bouwman,Groenendijk,Termaat&Plate,2009;Brooks,1993;Dolný,2005;Ketelaar&Plate, 2001;Pont,Faton&Pissavin,1999;Smallshire&Beynon,2010;Thompson,Purse&Rouquette, 2003). According to odonatological studies, activity can be understood in different manners. Firstitiswhatdragonfliesaredoing(e.g.perching,fighting,mating,foraging,movingfromone habitattoanother,dispersing),andthefrequencyordurationofeachactivitytypecanbestudied (Higashi,Nomakuchi,Maeda&Yasuda,1979;Norma-Rashid,1999;Rehfeldt,1989;Watanabe, Matsuoka, Susa & Taguchi, 2005). Second, it can reflect flight frequency or duration (Hilfert- Rüppell,1998;Norma-Rashid,1999;Watanabe&Matsunami,1990).Activityisimplicitlyrelated to flight behaviour (Corbet, 2004). Recently, Corbet and May (2008) emphasized that perchers (seeCorbet,1962),forinstancewhenfeeding,canperchandbeactive,whichimpliesthatonly usingflightstoassessactivitymaybeinappropriate.Theysuggestedthatanalterationofresponse to a predator disturbance defines whether an individual is inactive. A third way to approach activityintensityisthereforetoassessthethresholdofresponse–whichonecancall“awareness” –using,forinstance,thedistanceatwhichadragonflyisdisturbed.Toourknowledge,thishas neverbeenusedbefore.Fourth,activitycouldbeassessedusingflightspeed:atemperatezone Zygopteranflyingfasterinthemiddleofthedaycertainlyappearsmoreactivethanwhenflying slowlyinthemorning.Fifth,activityiscommonlyrelatedtothenumberofindividualspresentat thebreedingsite(Bick,Bick&Hornuff,1976;Conrad&Pritchard,1988;DeMarco&Resende, 2002; Gorb, 1992, pers. comm; May, 1980; Rehfeldt, 2003; Robinson & Frye, 1986; Testard, 1975;Utzeri,Falchetti&Carchini,1983).Corbet(2004)highlightedthatstudyingOdonataonly at water can provide a misleading idea of their activity pattern. This fifth measure of activity focusesonreproductivebehaviourbutclearlymakessensebecauseESM’sareusuallycarriedout atthebreedingsite,whereoviposition,larvalgrowthandemergencesoccur,andthereforewhere theautochthonyofpopulationscanbeexplored. Recentstudiesemphasizetheneedtotakeintoaccounttheprobabilityofdetectingaspeciesin ordertoestablishrealistictrendsovertheyearsorcomparisonsbetweensites(Bonifait,Defosdu Rau&Soulet,2008;Kéryetal.,2010;vanStrien,Termaat,Groenendijkb,Mensingb&Kéryc, 2010).Odonateactivitydependsonambienttemperature,T (e.g.DeMarco&Resende,2002; a Hilfert-Rüppell,1998;May,1980;McKay&Herman,2008;Pilon,Pilon&Caron,1995;Sformo & Doak, 2006) and during the day, lestids adapt to T and regulate their body temperature T a b by behavioural and postural adaptations (McKay & Herman, 2008; Robert, 1958;Watanabe & Tagushi,1993).Weexpectthoseadaptationstohaveanimpactonthedetectabilityofthespecies. The aim of this study was to assess throughout the day, at the breeding site, the following parameters: (i) the nature and frequency of L. macrostigma activities and their related flight intensity;(ii)theintensityofactivityintermsofflightspeedandawareness;(iii)presence;and (iv) exposure to the sun and height of perch, i.e. postural adaptations. We thereby wanted to identifythemostfavourabletimeofdayforalong-termESMofL.macrostigma. Materialsandmethods Studysites,timingandweatherconditions The study took place in two protected areas of the Camargue, Southern France: the Marais du VigueiratandtheTourduValat.TheformerbelongstotheConservatoiredulittoral,i.e.theFrench coast conservatory, a public establishment. The area is centred on coordinates 43◦32(cid:3)10(cid:3)(cid:3)N / 04◦45(cid:3)15(cid:3)(cid:3)E and covers 1200ha, consisting mainly of marshes. One of these, the Baisse des DielpatternofactivityofLestesmacrostigma 177 Marcels,isaplotsurroundedbydams.Thesurfaceofitssouthernpartisc.1.5haanditsbottom ismoreorlessflat,varyingbetween15and28cmasl(median=24cmasl,n=35).Thewater managementconsistsintheinflowoffreshwaterfromthecanaloftheVigueiratfromc.October toApril(valvesofditchesbetweenthecanalandtheplotareopen)andevaporationtherestof the year (valves are closed) because of the hot temperature and strong wind of the Camargue (Picon,1980).Thismanagementresultsinatemporarybrackishswamp;duringthestudyperiod, thewaterdepthvariedbetween25and0cm(drysoil).DozensofLestesmacrostigmahavebeen seen in the southern part of the Baisse des Marcels every year since 2005. Other encountered ZygopteraareL.sponsaHansemann,SympecmafuscaVanderLinden,IschnuraelegansVander LindenandI.pumilioCharpentier.Thevegetationisgrazedfromspringtoautumnandincludes Bolboschoenusmaritimus(L.)Palla,JuncusmaritimusLam.andJ.subulatusForssk,aswellas Schoenoplectus tabernaemontani (C.C.Gmel) Palla, Eleocharis palustris (L.) Roem. & Schult. andPhragmitesaustralis(Cav.)Steud.;bordersarecolonizedbyTamarixgallicaL.,J.acutusL. andArthrocnemumspp. Thesecondisanareacovering2560ha,ofwhich1845hahasRegionalNaturalReservestatus. Located5kmwestoftheMaraisduVigueirat(43◦30(cid:3)30(cid:3)(cid:3)N/04◦40(cid:3)00(cid:3)(cid:3)E),bothsitesareseparated bytheriverRhône.Overthecenturiesthisriverhasshapedtheareaintoasetoftemporarybrackish pondsandmarshesofdifferentsizes.L.macrostigmaisoneofthemostabundantOdonataand breeds in at least 30 sites in the Tour duValat. One of them, the Relongues, covers more than 20ha and its water level depends on rainfall. Other Zygoptera are the same as above but L. barbarus (Fabricius) is also present. The vegetation is grazed during winter and consists of B. maritimus,P.australis,S.litoralis(Schrad.)Pallaand,onthebanks,J.maritimus,T.gallicaand Arthrocnemumspp. Dataweregatheredbetween9and30June2009andbetween6Juneand21July2010,when populations were mature (Lambret, 2010), as it is known that sexual maturity of an individual affects its activity (Mayhew, 1994).Activity may also depend on the age of individuals (May, 1980)butsinceitwasnotpossibletoassesstheageofstudiedanimalsandsincetheemergence periodlastedin2010from7to30May(Lambret,unpubl.),ourdatasetreflectsamixtureofage classes. IntheCamargueduringthestudyperiod,solarnoonwasatc.13:45hlegaltime.Insummerin France legal time equals solar time plus 2hours. Hereafter times are given as legal time minus 2hours. During the study period, the earliest and latest sunrises were at 03:59h and 04:02h respectively;theearliestandlatestsunsetswereat19:19hand19:27h,respectively.Wetherefore assumedthatthedifferenceofdurationbetweentheshortestandthelongestday–8min–was negligibleregardingactivity.Timeofdaywasdividedinto1-hintervalsfrom04:00hto19:00h. Duringeachalternateinterval,centredon04:30h,06:30h,08:30h,etc.,werecordedinformation onbehaviourandnumbersofindividualsandpairspresent(seeAssessments,below). MeteorologicalconditionsaffectOdonataactivity(Joseph&Lahiri,1989;Pilonetal.,1995; Robinson&Frye,1986).Thus,dayswithrainand/orwithcloudcoverageover25%wereavoided. Zygopteracanflyintoawindupto3.5ms−1(Hilfert,1994inCorbet,2004,p.312)butthestudy sitewasshelteredbyTamarixtrees,resultinginawindspeedthatwasloweratthelevelofthe groundthanatthelevelofthetrees,aconditionwhichallowsflightactivityduringwindydays (Hilfert-Rüppell, 1998; Pilon et al., 1995).Thus, data were gathered with a wind force up to 3 Beaufort(5.5ms−1). Assessments ThreecategoriesofL.macrostigmawererecognized:males,femalesandpairs,hereafternoted (cid:2),(cid:3)andP,respectively.Westudiedinall636animalsorpairs(Table1). 178 P.H.LambretandA.Stoquert Table 1. BehavioursofLestesmacrostigmathroughouttheday:frequencies(%)ofeachbehaviourdisplayedwithin 5minutes.Cru&Patr=cruisingandpatrollingflights,Disp&Dist=wingthreatdisplayanddisturbancebyacon- specific,SpTr&Cop=spermtransferorcopulation.Forpairs,onlyfemalegroomingisshownastheywerealways thememberofthepairwhichdisplayedthisbehaviour,exceptasingleinstancewhenthemaledidalso(n=25). Category Behaviour 04:30 06:30 08:30 10:30 12:30 14:30 16:30 18:30h ♂ Groom 20.69 60.00 26.67 9.68 18.75 20.00 3.33 23.33 Cru&Patr 72.41 86.67 82.76 45.16 61.29 46.67 60.00 66.67 Encounter 31.03 36.67 36.67 54.84 25.00 16.67 0.00 20.00 Disp&Dist 6.90 0.00 3.33 0.00 6.25 0.00 0.00 6.67 Feed 3.45 36.67 30.00 61.29 62.50 50.00 63.33 83.33 n 29 30 30 31 32 30 30 30 ♀ Groom 13.33 13.33 35.48 29.03 5.88 20.69 23.33 10.00 Cru&Patr 10.00 23.33 35.48 77.42 23.53 41.38 30.00 66.67 Encounter 3.33 0.00 3.23 12.90 11.76 3.45 0.00 13.33 Disp&Dist 0.00 3.33 6.45 6.45 2.94 0.00 0.00 0.00 Feed 0.00 16.67 48.39 58.06 58.82 62.07 76.67 76.67 n 30 30 31 31 34 29 30 30 P Groom♀ 10.34 20.59 4.44 13.33 22.22 Cru&Patr 13.79 29.41 42.22 65.52 100 Encounter 3.45 5.88 4.44 6.67 44.44 Disp&Dist 27.59 17.65 20.00 20.00 11.11 Feed 0.00 2.94 2.22 6.67 22.22 Reproduction Wait 100 100 93.33 26.67 33.33 0.00 SpTr&Cop 0.00 0.00 4.44 53.33 0.00 0.00 Oviposit 0.00 0.00 2.22 20.00 66.67 100 n 29 34 45 30 9 2 Animalswerefoundbywalkingandsearchingamongthevegetationwheretheyusuallyperch. At first sight, we noted whether or not the animal was exposed to the sun and we assessed the heightatwhichitperchedfromthewatersurfaceorthesoil.Itwasthenobservedwithbinoculars for 5min. If our approach had disturbed the animal, we waited 2min before starting the 5min observation.Eachbehaviourwasrecordedonafielddataformfixedtotheforearm,thusallowing theobserveralsotooperateachronometer.Wesortedflightbehavioursascruisingandpatrolling (sensuWatanabe&Matsunami,1990),feeding,andencounteringasinglezygopteranorapair, disregarding for this last type of flight whether or not the focal animal returned to its original perch.Iftheanimalencounteredanotherinthecourseofcruising,thebehaviourwasrecordedas cruising.Thedurationofeachflightwasrecorded,andforeachinstanceofcruising,thedistance between departure and arrival was estimated. Flight speed was calculated by dividing cruising flightdistancebyitsduration.Disturbancewasestablishedwhenthefocalanimal,oroneorboth membersofthefocalpair,displayedthewingthreatorleftitsperch,apparentlyduetoharassment (e.g.Joseph&Lahiri,1989;Lutz&Pittman,1968;McMillan&Arnold,2003;Robinson&Frye, 1986);insomecaseswewerenotabletoseeifadisturbedanimaldisplayedthewingthreatbefore flyingaway.Thedurationofeachinstanceofgroomingwasalsorecorded.Forpairs,wenoted spermtransfer,copulationandoviposition.Attheendofthe5min,wewalkedseveralstepsfurther fromthestudiedanimalbeforewestartedtosearchforthenextinordertoreducethebiasassociated withobservingthesameanimalmultipletimes,i.e.toavoidpseudo-replication(Hurlbert,1984). Awarenesswasstudiedbyfindingaperchedanimalwithbinocularsasdescribedabove.When an animal was localized, we walked toward it until it escaped by flight, and we measured the “disturbingdistance”,i.e.fromitsinitialpositiontous,usingarollingmetalruler. Abundance at the breeding site was assessed by walking a transect across the southern part of the Baisse des Marcels plot. This transect was 100m long and divided into two subsequent segmentsof50m.Ateachsightingofananimal,werecordedifitwasaloneorpaired,inorder DielpatternofactivityofLestesmacrostigma 179 to calculate the ratio of individuals in pair to the total number of individuals; we also assessed itsdistancefromusinordertoassessthedetectability,i.e.theprobabilityofdetection,assuming thatthefurtherwewereabletodetectananimal,thehigherthedetectability. Air temperature and solar radiation were recorded by a Davis Vantage Pro meteorological stationwhichissetintheMaraisduVigueirat. Statisticalanalysis Behaviouraldataweretreatedasbinary:animaldisplayatypeofbehaviour(seeabove)ornot. Corresponding results are given as relative frequencies (sum =100%). Flight duration results are given as median and sample size (n), considering all animals recorded at a given time of day.Subsequently,wefocusedonanimalswhichflew,andwegivetherateofeachkindofflight relativetothesumofflightdurationofallanimalsofthesamecategory.Becauseabundanceatthe breedingsitewasstudiedoverseveraldaysandthemaximumnumberofindividualswasnotthe sameoneachday,dataaregivenasfrequenciesrelativetothedailymaximum(sum =100%). Significanceofcontingencytableswastestedusingχ2orG-tests.Thenormalityofdatasetswas testedwiththeKolmogorov–Smirnovtest.InthecaseofaGaussiandistribution,weusedone- wayANOVA; otherwise, we used the Kruskal–Wallis non-parametric test.Tukey’s and Dunn’s multiplecomparisonposthoctests(MCTs),wereperformedinordertodeterminewhichclasses, i.e. categories or times of the day, were responsible for significance in one-way ANOVA and Kruskal–Wallistests,respectively.CorrelationsweretestedwithSpearmanranktests.Weexpected aquadraticpatternofposturaladaptations;wethereforeusedageneralizedlinearmodeltostudy the effect of time of the day t (in minutes) and its squared value t2, the category of animal C, andtheinteractiontConexposuretosolarradiationE andtheheightatwhichanimalsperched H.Theequationofthemodelisgivenwiththevaluesoftheestimatesandtheirstandarderror betweenbrackets. Statistical tests were performed with GraphPad Prism software but the GLM tests with Statistica software and G-tests with an Excel spreadsheet available from http://udel. edu/∼mcdonald/statgtestind.html(accessed16January2011). Results Flightdurationandbehaviourfrequencies Grooming Changesingroomingfrequencythroughoutthedayweresignificantlydifferentbetweenmales andfemales(Table1;G-test:G=21.60,df =7,p <0.0001).Thepeakofgroomingfrequencies occurredat06:30hformalesand08:30hforfemalesand,atthosetimes,thedurationdevoted to this behaviour was significantly higher for males than at other times (Kruskal–Wallis test: H =37.23,df =7,p <0.0001;Dunn’sMCT:06:30hversus10:30h:differenceinranksum = 65.12, p <0.01; 06:30h versus 16:30h: difference in rank sum =72.00, p <0.01), but not significantlyhigherforfemales(one-wayANOVA:F =1.198,df =7,df =237,p =0.2519). 1 2 Peakgroomingfrequencyformaleswasalmosttwicethepeakforfemales. Reproduction Thefrequencyofpairsvariedsignificantlythroughouttheday(Kruskal–Wallistest:H =48.23, df =7,p <0.0001).Itrapidlyincreasedfrom04:30htoreachthehighestfrequenciesbetween 180 P.H.LambretandA.Stoquert Figure 1. FrequenciesofLestesmacrostigmapairsthroughouttheday:ratioofpairedindividualstothetotalnumber ofindividualsatagiventimeoftheday.Inordertoincreasethenumberofreplicatesbothsectionsofthetransectwalks werecountedseparatelyaswellaseachdatetocalculatethemedians(8≤n≤11,regardingtimeoftheday). Table 2. Significant multiple comparison posthoc tests (MCTs): Dunn’s MCT for Kruskal–Wallis tests, Drs=Differenceinranksum;Tukey’sMCTforone-wayANOVA:(a)proportionofpairedindividuals;(b)totalflight duration;(c)feedingdurationper5minutes;(d)singlefeedingflightduration,excluding04:30hdatabecauseofsmall samplesize;(e)abundanceatthebreedingsite;(f)detectability. MCT Drs p MCT q p (a) 06:30hvs14:30h 34.56 <0.05 (c) 04:30hvs16:30h 7.543 <0.001 06:30hvs16:30h 37.50 <0.01 06:30hvs16:30h 7.120 <0.001 06:30hvs18:30h 37.50 <0.01 08:30hvs16:30h 6.129 <0.001 08:30hvs14:30h 40.89 <0.01 10:30hvs16:30h 6.087 <0.001 08:30hvs16:30h 43.83 <0.001 12:30hvs16:30h 5.702 <0.01 08:30hvs18:30h 43.83 <0.001 14:30hvs16:30h 5.251 <0.01 10:30hvs16:30h 33.25 <0.05 04:30hvs18:30h 9.631 <0.001 10:30hvs18:30h 33.25 <0.05 06:30hvs18:30h 9.205 <0.001 (b) Category MCT Drs p 08:30hvs18:30h 8.243 <0.001 ♂ 04:30hvs14:30h 60.29 <0.05 10:30hvs18:30h 8.210 <0.001 06:30hvs10:30h 66.00 <0.01 12:30hvs18:30h 7.861 <0.001 06:30hvs12:30h 73.54 <0.001 14:30hvs18:30h 7.368 <0.001 06:30hvs14:30h 108.6 <0.001 (d) MCT Drs p 06:30hvs16:30h 86.61 <0.001 08:30hvs12:30h 112.5 <0.05 08:30hvs14:30h 72.52 <0.001 10:30hvs18:30h −146.0 <0.001 14:30hvs18:30h −67.51 <0.01 12:30hvs16:30h −74.26 <0.05 ♀ 04:30hvs10:30h −90.27 <0.001 12:30hvs18:30h −156.6 <0.001 04:30hvs12:30h −62.05 <0.05 14:30hvs18:30h −126.4 <0.001 04:30hvs14:30h −72.12 <0.01 16:30hvs18:30h −82.35 <0.001 04:30hvs16:30h −89.93 <0.001 (e) MCT Drs p 04:30hvs18:30h −130.4 <0.001 04:30hvs10:30h 46.25 <0.001 06:30hvs10:30h −70.05 <0.01 04:30hvs12:30h 35.50 <0.01 06:30hvs16:30h −69.72 <0.01 04:30hvs14:30h 43.94 <0.001 06:30hvs18:30h −110.1 <0.001 (f) MCT Drs p 08:30hvs18:30h −76.68 <0.001 04:30hvs08:30h 59.24 <0.05 12:30hvs18:30h −68.31 <0.01 04:30hvs12:30h 63.81 <0.05 14:30hvs18:30h −58.24 <0.05 04:30hvs14:30h 80.73 <0.05 P 04:30hvs10:30h −38.46 <0.01 04:30hvs16:30h 54.95 <0.05 04:30hvs12:30h −74.39 <0.001 06:30hvs08:30h 4.721 >0.05 06:30hvs10:30h −18.75 >0.05 06:30hvs12:30h −54.68 <0.01 08:30hvs10:30h −23.47 >0.05 08:30hvs12:30h −59.40 <0.01 DielpatternofactivityofLestesmacrostigma 181 Table 3. FlightactivityofLestesmacrostigmathroughouttheday:totalflightdurationper5minutes[median(n)]and percentageofthedurationofeachkindrelativetothetotalflightdurationofallanimalsofthesamecategoryandsame timeoftheday.Notethatthesepercentagescanbegivenevenifthemedianequalszero.Abbreviationsarethesameas thoseinTable1. Category Flights 04:30h 06:30h 08:30h 10:30h 12:30h 14:30h 16:30h 18:30h ♂ Duration 6.6(25) 22.88(24) 8.69(26) 2.72(29) 2.53(30) 0.69(30) 1.55(30) 5.12(27) Cru&Patr 87.37% 85.76% 81.18% 39.56% 39.92% 38.42% 38.03% 44.37% Encounter 10.87% 12.68% 15.73% 51.82% 40.92% 21.87% 0.00% 4.41% Feed 1.76% 1.56% 3.09% 8.62% 19.16% 39.70% 61.97% 51.23% ♀ Duration 0(30) 0(30) 0.84(30) 1.91(30) 1.02(34) 1.4(29) 1.86(30) 6.38(27) Cru&Patr 35.71% 67.80% 55.16% 56.07% 33.33% 47.54% 23.49% 55.56% Encounter 64.29% 0.00% 0.84% 23.12% 21.16% 4.46% 0.00% 3.05% Feed 0.00% 32.20% 44.00% 20.81% 45.51% 48.00% 76.51% 41.39% P Duration 0(28) 0(34) 0(44) 1.13(28) 6.00(8) Cru&Patr 100% 82.65% 95.13% 93.72% 84.94% Encounter 0.00% 16.07% 2.46% 3.95% 13.50% Feed 0.00% 1.28% 2.42% 2.33% 1.55% 06:30h and 10:30h, and then decreased until 14:30h (Figure 1,Table 2a). No pairs were ever seenafter14:30h.Pairshadthreesuccessivereproductivebehavioursoverthecourseoftheday (Table1).Afterthemalehadseizedthefemale,thepairdidnotshowanyfurthermotionforseveral hours,butoccasionalgroomingandchangesofperch,anintervalwecalledthe“waitingphase”. Pairsthencopulatedbetween08:30hand10:30h.Ovipositionstartednotlongaftercopulation (1.5toc.10min,n=3observations)whilethemaleandfemalewerestillpaired.Femalesrarely depositedeggsalone(14.29%,n=14).Non-contactguardingwasneverobserved. Flights Disregarding time of the day, the total flight duration per 5min was higher for males than for femalesandpairs(Table3;one-wayANOVA:F =18.32,df =2,df =412,p <0.0001;Tukey 1 2 multiplecomparisonposthoctest:(cid:2)versus(cid:3):q =7.753,p <0.001;(cid:2)versusP:q =6.055, p <0.001; (cid:3) versus P: q =0.2597, p >0.05). It varied significantly throughout the day for allcategories(Table1;Kruskal–Wallistest:(cid:2):H =52.24,df =7,p <0.0001;(cid:3):H =74.42, df =7, p <0.0001; P: H =32.11, df =4, p <0.0001; Table 2b). For males, flight duration rapidlyincreasedfrom04:30htoreachitsmaximumat06:30handthendecreasedtoward14:30h; it then increased again toward the evening. Females flew for longer periods at 10:30h, 16:30h and18:30h.Pairsflewforlongerperiodsat12:30h. Cruising flights were much more abundant than patrolling flights (respectively 93.71% and 6.29%,n=795).Mostpatrollingflightswereexecutedbymales(76.00%,n=50)buttheirrate relativetoallflightsofbothtypes–cruisingandpatrolling–didnotdifferbetweensexes(χ2 = 1.129, df =1, p =0.288). Pairs rarely patrolled (0.69%, n=145). Taking both cruising and patrollingflightstogether,thepatternoftheirfrequencyvariedsignificantlybetweencategories (Table1;G-test:G=357.68,df =14,p <0.0001).Malescruisedandpatrolledmorefrequently andforlongerperiodsfrom04:30hto08:30hthanduringtherestoftheday(Tables1,3).Females cruisedmorefrequentlyat10:30hand18:30handlongerat18:30h.Pairscruisedmorefrequently andforlongerperiodsat12:30h. The pattern of encounter flight frequencies differed significantly among categories (Table 1; G-test: G=118.54, df =14, p <0.0001). The highest frequencies of encounter flights were observedinmales,especiallyinthefirsthalfofthedaywithapeakat10:30h,inpairsat12:30h and,toasmallerdegree,byfemalesat10:30h(Table1).Encounterflightsrepresentedahigher proportionoftotalflightdurationat10:30hformales(Table3).Theyweretargetedatconspecifics, 182 P.H.LambretandA.Stoquert seldomatLestessponsa(respectively90.57%and9.43%,n=106)andneveratSympecmafusca oratIschnuraspp.Focusingonconspecificencounteringflights,individualsweremorefrequently targetedthanpairs(respectively79.17%and20.83%,n=96). Feedingflightsofpairswereinfrequent,initiatedbythemale,andsometimessuccessful.The patternoffeedingflightfrequencieswasthesameformalesandfemales(Table1;G-test:G= 19.82,df =7,p =0.0060).Thisbehaviourwasmorefrequenttowardtheeveningand,pooling male and female durations, the time devoted per 5min to catch prey was higher at 16:30h and 18:30h(one-wayANOVA:F =12.35,df =7,df =471,p <0.0001;Table2c).Furthermore, 1 2 thedurationoffeedingflightswashigherintheeveningthantherestoftheday(Kruskal–Wallis test, excluding 04:30 h data because of small sample size: H =67.81, df =6, p <0.0001; Table2d). Disturbance Pairs were more frequently disturbed by conspecifics or triggered to display the wing threat – by at least one member of the pair – than were unpaired individuals (respectively 76.56% and23.44%,n=64).However,thesedisturbancesneverresultedinthebreak-upofpairs.The patternofdisturbancewasdifferentamongcategories(G-test:G=56.91,df =14,p <0.0001): disturbanceofpairsdecreasedfrom04:30hto14:30h,thatoffemalesincreasedfrom04:30hto 08:30handdecreasedfrom10:30untilevening,andthatofmaleswasirregular. Postures Males,femalesandpairschangedtheirexposuretodirectsunlight–andthereforetosolarradia- tion–duringtheday(Figure2a).Focusingonmalesandfemalesonly,thebestmodelresultedin Logit(E)=at2+bt +ctC+d+e(cid:3),withestimatesa =40.710(6.871),b=−48.405(8.124), Figure 2. PosturaladaptationsofLestesmacrostigmathroughouttheday(black:♂,lightgrey:♀,darkgrey:pairs).(a) Proportionofanimalsexposedtosolarradiation;(b)heightatwhichanimalsperchedatfirstsight(median).Samplesizes aregiveninTable4.Exposuredataarescarcefor04:30hbecausethesunwaslowintheskyandTamarixtreesshaded muchofthebreedingsite.From14:30h,pairsweretoorareorabsent. DielpatternofactivityofLestesmacrostigma 183 c=3.378 (1.069), d=14.378 (2.331) and e=−1.803 (0.627), where d is the ordinate origin and e its correction for females, the model being based on males. The significant interaction tC suggests that males and females behaved differently: in the morning males perched more in the sun than did females, a situation that was reversed after 12:30h. However the pattern was similar: exposure frequency was higher in early morning, decreased toward solar noon, then increased toward the evening. When pairs were included in the model, no reliable esti- mates of a, b, c, d and e were obtained, probably because the size of the dataset was not large enough. Univariate analysis suggests that pairs tended to behave differently from males and females (G-test: G=21.97, df =6, p =0.012): their exposure frequency also decreased from 06:30h to 08:30h but then increased toward solar noon, i.e. from copulation toward oviposition. RegardingtheheightofperchH (Figure2b),thebestmodelresultedinLog(H)=at2+bt + c +d, with estimates a =5.672 (0.534), b=−6.449 (0.599), c=5.255 (0.147) and d(cid:2) = C −0.044(0.027),d(cid:3) =0.129(0.025),d =0,wherecistheordinateoriginandditscorrection P regarding the category; d =0 because the model was based on pairs and no correction to the P ordinateoriginwasthereforeneeded.Malesandpairsbehavedsimilarly(d(cid:2) 95%CIincluded zero).Incontrast,dwashigherforfemales,indicatingthattheyperchedatgreaterheights.There wasnoinfluenceoftC,indicatingthatmales,femalesandpairsfollowedthesamepattern:the heightatwhichanimalsperchedwashigherat04:30h,decreasedtowardsolarnoon,andincreased toward18:30h. Ambienttemperatureandsolarradiationvariedsignificantlyduringtheday(Kruskal–Wallis test:T :H =232.7,df =7,p <0.0001;SolRad:H=378.9,df =7,p <0.0001.Spearman a rankcorrelation:r =0.6269,p <0.0001,n=447)bothincreasedfrom04:30hto10:30–12:30h andthendecreasedtoward18:30h(Table4). Flightspeedandawareness Flight speed was highest when temperatures were highest, i.e. 12:30h (Table 4 and Figure 3). Flight speed was positively correlated with ambient temperature in males, females and pairs (Spearmanrankcorrelations:(cid:2):r =0.5531,p =0.0001,n=148;(cid:3):r =0.3846,p =0.0002, n=87;P:r =0.3705,p =0.0036,n=60). Thedisturbingdistanceofmalesandfemalesshowedsignificantvariationsthroughouttheday, while it remained constant for pairs; furthermore, for males, awareness was highest at 04:30h anddecreasedtowardtheevening.Bycontrast,awarenessforfemalesincreasedtoward16:30h (Figure4;Spearmanrankcorrelations:(cid:2):r =−0.2950,p <0.0001,n=242;(cid:3):r =0.3813, p <0.0001,n=220;P:r =0.068,p =0.4418,n=131). Table 4. VariationofenvironmentalconditionsthroughoutthedayforLestesmacrostigmaindividualsforwhichheight ofperchandexposuretodirectsunlightwererecorded.Resultsaregivenasamedian. Environmentalparameter 04:30h 06:30h 08:30h 10:30h 12:30h 14:30h 16:30h 18:30h Ta(◦C) Height 16.3 19.5 22 24.9 26.6 23.7 23.95 21.4 Exposure 16.8 19.4 22 25 26.7 23.7 23.8 21.7 Solarradiation(W/m2) Height 36 304 653 888 925 709 398 31 Exposure 72 318 664 890 939 743 419 47.5 UVdose(μW/lumen) Height 0 0.1 0.4 0.71 0.74 0.39 0.1 0 Exposure 0 0.1 0.41 0.73 0.75 0.42 0.11 0 n Height 86 94 104 91 75 61 60 60 Exposure 13 73 97 83 61 45 41 34 184 P.H.LambretandA.Stoquert Figure 3. FlightspeedofLestesmacrostigma:linearregressionsofflightspeedagainstambienttemperature(♂:triangle andsolidblackline;♀:circlesanddottedline;pairs:squaresandsolidgreyline). Figure 4. Activityperse,i.e.“awareness”(responsivenesstodisturbance)ofLestesmacrostigmathroughouttheday: linearregressionsof“disturbingdistance”againsttimeofday.(a)Males;(b)females;(c)pairs. Abundanceatthebreedingsiteanddetectability Thenumberofadultspresentatthebreedingsitevariedsignificantlythroughouttheday(Kruskal– Wallistest:H =36.53,df =7,p <0.0001)andwashighestonaverageat04:30h(Table2e). Furthermore,thedailymaximumalwaysoccurredat04:30h,thoughsometimesthesamevalue wasalsorecordedat12:30hand18:30h(Figure5). Thedistancetowhichtheobserverwasabletospotanimalsvariedsignificantlythroughoutthe day(Kruskal–Wallistest:H =32.75,df.=7,p <0.0001):detectabilitywashigherat04:30h (Table 2f). Very few animals were spotted while in flight (1.82%, n=275), even at 04:30h, 06:30hand18:30h,whenflightactivitywasmoreintense. Discussion Notsurprisingly,mostbehaviourofLestesmacrostigmaatthebreedingsitewasrelatedtorepro- duction.Thetemporalpatternofreproductionwasunimodal,whichiscommonamongOdonata (e.g.Doerksen,1980;Utzeri&Ercoli,2004).Reproductioninvolvedthefollowingphases:seizure

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.