Diboson excess and Z(cid:48)–predictions via left-right non–linear Higgs Jing Shu1,∗ and Juan Yepes1,† 1State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC) Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China The excess events reported by the ATLAS Collaboration in the WZ–final state, and by the CMS Collaboration in the e+e−jj, Wh and jj–final states, may be induced by the decays of a heavy boson W(cid:48) in the 1.8–2 TeV mass range, here modelled via the larger local group SU(2) × L SU(2) ×U(1) in a non–linear dynamical Higgs scenario. The W(cid:48)–production cross section at R B−L the13TeVLHCisaround700–1200fb. ThisframeworkalsopredictsaheavyZ(cid:48) bosonwithamass of2.5–4TeV,andsomedecaychannelstestableintheLHCRunII.Wedeterminethecrosssection times branching fractions for the dijet, dilepton and top–pair Z(cid:48)–decay channels at the 13 TeV LHC around 2.3, 7.1, 70.2 fb respectively, for MZ(cid:48) = 2.5 TeV, while one/two orders of magnitude smallerforthedijet/dileptonandtop–pairmodesatMZ(cid:48) =4TeV.Non-zerocontributionsfromthe 6 effectiveoperators,andtheunderlyingHiggssectorofthemodel,willinducesizeableenhancement 1 in the W+W− and Zh–final states that could be probed in the future LHC Run II. 0 2 n I. INTRODUCTION b) can be understood [8, 12–14] through the process a pp → W(cid:48) → Ne → eejj [15], and for a charged gauge J TantalizingdeviationsfromtheSMpredictionshavebeen boson mass MW(cid:48) ∼ 2 TeV, with gR < gL at the TeV- 6 recently reported by the ATLAS and CMS Collabora- scale [8]. Finally, the dijet excess (item d) may simply 2 tionsaroundinvariantmassof1.8–2TeV,andareclaim- be yielded by W(cid:48) →jj. ing for: Theobservedexcesseventsareinterpretedinthiswork h] asbeinginducedbythedecaysofaheavybosonW(cid:48) with p a) 3.4σ local (2.5σ global) excess in the ATLAS a mass range 1.8–2 TeV, where the underlying frame- - search[1](CMSreportsaslightexcessatthesame work relies in a non–linearly realized left–right model p mass [2]) for a heavy resonance W(cid:48) decaying as coupled to a light Higgs particle. Calling for the larger e h W(cid:48) →WZ →JJ, where J stands for two colinear localgroupG =SU(2)L×SU(2)R×U(1)B−L inanelec- [ jets from a W or Z–boosted decay; troweak non–linear σ–model, the Goldstone bosons are parametrized as customarily via the dimensionless uni- 1 b) 2.8σ excess in the CMS search [3] for a heavy right tarymatricesU (x)andU (x)forthesymmetrygroup v L R handed boson W(cid:48) decaying into an electron and a SU(2) ×SU(2) , and defined as 1 L R 9 right handed neutrino N, as W(cid:48) →Ne→eejj; 8 UL(R)(x)=eiτaπLa(R)(x)/fL(R), (1) 6 c) 2.2σ excess in the CMS search [4] for W(cid:48) → Wh, 0 with a highly boosted SM Higgs boson h decaying with πLa(R)(x) the corresponding GB fields suppressed . as h→b¯b and W →(cid:96)ν (with (cid:96)=e,µ); by their associated non–linear sigma model scale f . 1 L(R) In addition, this non–linear effective set–up is coupled a 0 6 d) 2.1σ excess in the CMS dijet search [5]. posteriori to a Higgs scalar singlet h through powers of 1 h/f [16], via the generic light Higgs polynomial func- L : InspiteofrequiringmorestatisticsattheLHCRunIIto tions F(h) [17] v shed light on their real origin, and being not significant i X enough to point out BSM new phenomenon, it is worth- h h2 (cid:16)h3(cid:17) F (h)≡1+2a +b +O . (2) r whiletoexplorewhichfeaturesaremotivatedbysuchde- i i fL i fL2 fL3 a viationsinagiventheoreticalframework. Inthisregard, many models and scenarios have been proposed. Among This work is split into: Sect. II describes the EW ef- them, the left–right EW symmetric model, based on the fective Lagrangian following the light dynamical Higgs gauge group G = SU(2) ×SU(2) ×U(1) [6, 7], picture in [17–21] (see also Ref. [22–24] and [25] for a L R B−L seems to address properly the observed excesses in all Higgs portal to scalar dark matter in non-linear EW ap- the mentioned decay channels. Indeed, the WZ excess proaches),focusedonlyintheCP–conservingbosonicop- (item a) and Wh excess (item c) can be tackled [8–10] erators1. The mixing effects for the gauge masses trig- viaW(cid:48) →WZ, Wh,astheimpliedcouplingsarisenatu- geredbytheLRHoperatorsandthecorrespondinggauge rallyinthesemodels(see[11]forsomealternativeexpla- physical masses are also analysed there. Sect. III anal- nations of the diboson excess). The eejj excess (item yses the W(cid:48)–production and the constraints on the pa- rameter space of our scenario entailed by the reported ∗Electronicaddress: [email protected] †Electronicaddress: [email protected] 1 See [20,23,26,27]fornon–linearanalysisincludingfermions. 2 excesses in the WZ and Wh–final states. Sect. IV ex- introduced in the scenario once the SM local symmetry plores the prediction of a heavy boson Z(cid:48) in the model, group G is extended to G. The associated fermion ki- SM its possible mass range and the implied dijet, dilepton netictermsaredescribedbythe3rdand2ndlinesin(4)- and top–pair decay channels. The less dominant decays (5) respectively, with the quark and lepton doublets qi Z(cid:48) →{W+W−, Zh},andthesizeableenhancementthey and li (i stands for fermion generations) defined as cansufferbythephysicalimpactofnon-zerocontribution from the effective non–linear operators is also analysed. (cid:18)ui (cid:19) (cid:18)νi (cid:19) qi = L ∼(2,1,1/6), li = L ∼(2,1,−1/2), Finally, Sect. V summarizes the main results. L di L ei L L II. EFFECTIVE LAGRANGIAN qi =(cid:18)uiR (cid:19)∼(1,2,1/6), li =(cid:18)NRi (cid:19)∼(1,2,−1/2), R di R ei R R (8) The NP departures with respect to the SM Lagrangian L andwillbeencodedinthisworkthroughtheeffective where it have been specified the transformation prop- 0 Lagrangian erties under the group G corresponding to the usual fermion representation for the left-right models. The Lchiral =L0 + L0,R + ∆LCP + ∆LCP,LR. (3) right-handed neutrinos NRi acquire masses at the TeV scalethroughthemechanismofRef.[28]. Thescalarsec- The first three pieces in Lchiral read as torincludesingeneralanSU(2)RdoubletχRwhoseVEV around several TeV triggers the breaking of SU(2) × R L = U(1) downtotheSMhyperchargegroupU(1) ,plus 0 B−L Y − 41BµνBµν − 14Wµaν,LWLµν,a− 14GaµνGµν,a+ abrbeaidkoinugbleattΣthwehwoeseakVsEcValetr(igsegeer[s2t9h]efoSrUm(2o)rLe×deUta(i1l)sY). The corresponding covariant derivatives are given by 1 f2 (cid:16) (cid:17)(cid:18) h (cid:19)2 + 2(∂µh)(∂µh)−V(h)− 4LTr VLµVµ,L 1+ fL + Dµψχ ≡ ∂µψχ + 2i gχWχµ,aτχaψχ+ig(cid:48)BµYB−Lψχ, +iq¯ D/q +i¯l D/l , (9) L L L L where τa and Y correspond to the SU(2) and (4) χ B−L χ U(1) generators, with χ ≡ L, R, and the fermion B−L field ψ standing for ψ ≡ q, l. Other fermion ar- L = rangements, dictated either by leptophobic, hadropho- 0,R 1 f2 (cid:16) (cid:17)(cid:18) h (cid:19)2 bic, fermionphobic [30–32], ununified [33] or non- − Wa Wµν,a − R Tr Vµ V 1+ + universal [34] are also possible and are beyond the scope 4 µν,R R 4 R µ,R f L of this work. +iq¯ D/q +i¯l D/l , Operators mixing the LH and RH-covariant are also R R R R constructable in this approach via the proper insertions (5) oftheGoldstonematricesU andU ,morespecifically, where the adjoints SU(2) –covariant vectorial Vµ L R L(R) L(R) through the following definitions [21] and the covariant scalar T are defined as L(R) Vµ ≡(DµU ) U† , T ≡U τ U† , (6) V(cid:101)χµ ≡U†χVχµUχ, T(cid:101)χ ≡U†χTχUχ, (10) χ χ χ χ χ 3 χ withχ=L,Randthecorrespondingcovariantderivative for both of the Goldstone matrices UL(R)(x) introduced W(cid:102)χµν ≡U†χWχµνUχ, (11) as whereWµν ≡Wµν,aτa/2. Non–zeroNPdepartureswith χ χ DµU ≡∂µU + i g Wµ,aτaU −i g(cid:48)BµU τ3 (7) respect to those described in L0 + L0,R + L0,LR will χ χ 2 χ χ χ χ 2 χ be parametrized through the remaining last two pieces in (3), i.e. ∆L and ∆L . The former contains CP CP,LR where the SU(2) , SU(2) and U(1) gauge fields L R B−L LH and RH covariant objects up to the p4–order as are denoted by Waµ, Waµ and Bµ correspondingly, and L R the associated gauge couplings gL, gR and g(cid:48) respec- ∆L =∆L +∆L . (12) tively. The scale factor of Tr(VµV ) entails GB– CP CP,L CP,R L µ,L kinetic terms canonically normalized, in agreement with The latter can be further written down as the U –definition in (1). The corresponding SU(2) – L R counterparts for the strength gauge kinetic term and the 26 (cid:88) (cid:88) custodial conserving operator at the Lagrangian L are ∆L =α P (h)+ α P (h)+ α P (h) 0 CP,L B B i i,L i i,L parametrizedbyL0,R in(5),entailingthusanadditional i={W,C,T} i=1 scale f that encodes the new high energy scale effects (13) R 3 ∆LCP,R = (cid:88) βiPi,R(h) + (cid:88)26 βiPi,R(h). (14) Ttehrme coofm∆pLlete set ohfavoepebreaetnorfsulPlyi(ja)n,LdRl(isht)edininth[2e1s]e.cTonhde CP,LR i={W,C,T} i=1 corresponding CP–violating counterparts of ∆L and CP ∆L havebeencompletelylistedandstudiedin[37]. Themodel–dependentconstantcoefficientsα andβ are CP,LR i i Notice that in the unitary gauge, non-zero mass mix- denoting correspondingly the weighting coefficients for ing terms among the LH and RH gauge fields are trig- the LH and RH operators, whilst the first two terms of gered by the operator P (h), leading to diagonalize ∆L in (13) and the first term in (14) can be jointly C,LR CP,L the gauge sector in order to obtain the required physical written as gauge masses. g(cid:48)2 P (h) =− B BµνF (h), B 4 µν B g2 P (h) =− χ Wa Wµν,aF (h), W,χ 4 µν,χ χ W,χ (15) f2 (cid:16) (cid:17) A. Charged and neutral gauge masses P (h) =− χTr VµV F (h), C,χ 4 χ µ,χ C,χ P (h) = fχ2 (cid:16)Tr(cid:16)T Vµ(cid:17)(cid:17)2F (h), The gauge basis is defined by T,χ 4 χ χ T,χ W3 withsuffixχlabellingagainasχ=L,R,andthegeneric W± µ,L Falil(thh)e–foupnecrtaiotonrsoffotlhloewsincagladrefisninitgiloent h(2)i.s Ninotrgolduuocneidc ofopr- W(cid:99)µ± ≡Wµ±,L , N(cid:98)µ ≡Wµ3,R (18) erator has been included in ∆LCP,L. The contribution µ,R Bµ ∆L hasalreadybeenprovidedin[17,18]inthecon- CP,L text of purely EW chiral effective theories coupled to a light Higgs, whereas part of ∆LCP,L and ∆LCP,R were where the charged fields Wµ±,χ are introduced as usual partially analysed for the left–right symmetric frame- works in [35, 36], and finally completed in [21]. W1 ∓ iW2 Finally, ∆L parametrizes any possible mixing W± ≡ µ,χ √ µ,χ , χ=L, R. (19) CP,LR µ,χ 2 interacting term between the SU(2) and SU(2) – L R covariant objects up to the p4–order in the Lagrangian expansion, permitted by the underlying left–right sym- The mass eigenstate basis is defined as metry, and encoded through A (cid:88) (cid:88)26 (cid:32) W± (cid:33) µ ∆LCP,LR =i={W,C,T}γiPi,LR(h)+i=2,i(cid:54)=4γi(j)Pi(j),LR(h) Wµ± ≡ Wµ(cid:48)± , Nµ ≡ Zµ , (20) µ (16) Z(cid:48) µ where the index j spans over all the possible operators that can be built up from the set of 26 operators P (h) i,χ and it can be linked to the gauge basis through the fol- in (13)–(14), and here labelled as P (h) together i(j),LR lowing field transformations withtheircorrespondingcoefficientsγ . Thefirstterm i(j) in ∆L encodes the non-linear mixing operators CP,LR W(cid:99)µ± ≡RWWµ±, N(cid:98)µ ≡RN Nµ. (21) 1 (cid:16) (cid:17) PW,LR(h) =−2gLgRTr W(cid:102)LµνW(cid:102)µν,R FW,LR(h), The mass matrices for the charged and neutral sector in the gauge basis are 1 (cid:16) (cid:17) PC,LR(h) = 2fLfRTr V(cid:101)LµV(cid:101)µ,R FC,LR(h), g2 f2 1+αC −√γCλ g2 f M = L L , λ≡ L (cid:15)2, (cid:15)≡ L . PT,LR(h) = 12fLfRTr(cid:16)T(cid:101)LV(cid:101)Lµ(cid:17)Tr(cid:16)T(cid:101)RV(cid:101)µ,R(cid:17)FT,LR(h) W 4 −√γCλ (1+λβC) gR2 fR (17) (22) 4 (cid:16) (cid:17) 1+α −√γ −g(cid:48) 1+α− fRγ λ gL fL (cid:16) (cid:17) MN = gL24fL2 −√γλ 1+λβ gLg√(cid:48)λ γ− ffRL (1+β) (23) −g(cid:48) (cid:16)1+α− fRγ(cid:17) g√(cid:48) (cid:16)γ− fR (1+β)(cid:17) g(cid:48)2 (cid:16)1+α− 2fRγ+ fR2 (1+β)(cid:17) gL fL gL λ fL gL2 fL fL2 with the definitions α≡α −2α , β ≡β −2β , γ ≡γ +2γ . (24) C T C T C T Therotationmatrixforthechargedsectorcanbewritten out to be depending on the masses ratio M2 /M2 W W(cid:48) down as through the parameter λ and the mixing coefficient γ C in (22) as c −s ζ ζ √ RW = , cζ ≡cosζ, sζ ≡sinζ. λ g2 f2 M2 s c tanζ =− γ , λ≡ L L (cid:39) W . (31) ζ ζ 1−λ C g2 f2 M2 (25) R R W(cid:48) For the neutral sector the rotation is dictated by the The neutral gauge masses are Euler-angles parametrization in terms of three angles: the Weinberg mixing angle θW, and the analogous mix- M2 (cid:39) MW2 , M2 (cid:39) MW2 (cid:48) (cid:0)1−2s2 (cid:15)γ(cid:1) (32) ing angle θR for the SU(2)R×U(1)B−L subgroup, both Z c2W Z(cid:48) c2R R defined as g g with the coefficient γ introduced in (24). The well mea- cosθW ≡cW = (cid:112)g2L+g2 , sinθW ≡sW = (cid:112)g2Y+g2 sured MZ–mass strongly constrains additional contribu- L Y L Y tions from the operators P (h) and P (h) in (32). (26) C,L T,L Similarly, the M –mass bounds tightly constrains the W cosθR ≡cR = (cid:112) gR , sinθR ≡sR = (cid:112) g(cid:48) . conAtsriibtuctaionnboefnPoCt,icRe(dh)frionm(3(03)2.), the Z(cid:48)-mass turns out g2 +g(cid:48)2 g2 +g(cid:48)2 R R tobelargerwithrespecttotheW(cid:48)-mass,i.eM >M . (27) Z(cid:48) W(cid:48) In addition, a mass range for the neutral gauge field Z(cid:48) The third angle φ can be linked to the latter two up to can be predicted in terms of the W(cid:48)–mass and the gauge O((cid:15)2γ2)–contributions through couplings g and g , via the mixing angle θ in (27) R Y R tanφ (cid:39) (cid:15) gL cR (cid:0)(cid:15)s2 −γ(cid:1) . (28) and the link among the SU(2)L, U(1)B−L and the SM g c R hypercharge gauge couplings as R W The rotation matrix for the neutral sector becomes 1 1 1 + = . (33) parametrized then as g2 g(cid:48)2 g2 R Y s c (cid:15)c gL (cid:0)γ−(cid:15)s2(cid:1) W W R gR R The observed excess at the ATLAS and CMS Collabora- RN (cid:39)cW sR −sRsW − ggRL ccW2R (cid:15)γ cR(cid:16)1− ggRL sRcWsW (cid:15)γ(cid:17) . tpiroentsedatrooubnedinidnvuacreidanbtymaWass(cid:48)–ocfon1t.8ri–b2utTioenV. cTahnebcoeuipnltienrg- g will determine the strength of the couplings among c c c (cid:16)−s + gL sR (cid:15)γ(cid:17) −s − gL sWc2R (cid:15)γ thRe W(cid:48) and fermions fields, and therefore it will control R W R W gRcW R gR cW aswelltheproductionrateofW(cid:48)–resonancesviathepro- (29) cess pp→W(cid:48) analysed in the following section. with the coefficient γ encoding the contributions in- duced by the left–right custodial conserving and custo- dial breaking operators P (h) and P (h) respec- C,LR T,LR III. W(cid:48)–PRODUCTION tively (defined in (24)). Such contributions are sup- pressed by the scale ratio (cid:15). In the limit f (cid:28) f , the L R charged gauge masses are By considering the charged currents from the La- grangians L and L in (4) and (5) respectively, we 0 0,R 1 (cid:16) (cid:17) 1 (cid:16) (cid:17) M2 (cid:39) g2 f2 1−λγ2 , M2 (cid:39) g2 f2 1+λγ2 . have W 4 L L C W(cid:48) 4 R R C (30) 1 (cid:16) √ (cid:17) L =−√ u¯γµ g λγ P −g P dW(cid:48) + h.c., where the masses have been expanded up to M2 /M2 - udW(cid:48) 2 L C L R R µ W W(cid:48) terms. The mixing angle ζ for the charged sector turns (34) 5 section productions are • AtM ∼1.8TeV,around∼0.25pb, 1.2pb, 1.5pb √W(cid:48) at s =8-13-14 TeV respectively; • At M ∼2TeV, around ∼0.13pb, 0.7pb, 0.9pb W(cid:48) and at the same c.o.m energies correspondingly. Thecouplingg canbedeterminedfromthecrosssection R required to produce the dijet resonance near M . The W(cid:48) CMSdijetexcess[39]atamassinthe1.8–1.9TeVrange indicates that the W(cid:48) production cross section times the dijet branching fraction is in the 100–200 fb range (this FIG. 1: W(cid:48)-production cross section via the process pp→W(cid:48) is consistent with the ATLAS dijet result [40], which as a function of MW(cid:48), for gR = 0.5 and at the 8-13-14 TeV shows a smaller excess at 1.9 TeV). This was assumed LHC (black, blue and red curves respectively). Departures with in Refs. [8, 10] to be the range for σ(pp → W(cid:48) → jj), respect to the vanishing γC-case are suppressed by MW/MW(cid:48) where j is a hadronic jet associated with quarks or anti- andcanbeentirelyneglectedfromtheproductioncrosssection. quarksotherthanthetop. BycomparingtheW(cid:48)produc- tion cross section to the CMS dijet excess, the coupling g was determined in the range g ≈ 0.45−0.6 [8]. A R R where a flavour diagonal couplings have been assumed similar range is obtained by computing the dijet decay and the family indices are implicit, with P ≡ channel of a W(cid:48) in our scenario, and it will be assumed L(R) (cid:0)1∓γ5(cid:1)/2. The W(cid:48)-production cross section through henceforth. Such range, together with a W(cid:48)–boson mass the process pp → W(cid:48) can be computed from the La- nearby 1.8–2 TeV, can be translated via the W(cid:48) mass grangianin(34)byusingMadGraph5andimplementing formula in (30) into the relation the scale-dependent K-factors calculated in [38]. They √ are in the ranges K ∈ [1.32, 1.37] at s = 8 TeV 3.6–4TeV f ≈ ≈ 6−8TeV. (35) and K ∈ [1.23, 1.25] at 13-14 TeV. Fig. 1 shows the R g R W(cid:48)-production cross section for g = 0.5 at the center- R of-mass (c.o.m) energies 8-13-14 TeV LHC (black, blue The W(cid:48)-production via the decay modes pp → W(cid:48) → and red curves respectively). The coefficient γ is run- WZ and pp → W(cid:48) → Wh, together with the observed C ning as γ = −1.0, 0, 1. In general, departures with excesses in the WZ and Wh–final states at ATLAS and C respec√t to the vanishing γC-case are suppressed by the CMS, allow us to infer ranges for the strength of the ratio λ(cid:39)M /M ,andtheycanbeneglectedforthe associates operators contributing to those channels. The W W(cid:48) W(cid:48)-production. As it can be seen from Fig. 1, the cross latter can be described by the effective Lagrangians (cid:16) (cid:17) L =i g(1) W† W(cid:48)νZµ + g(2) W(cid:48)† WνZµ + g(3) Z Wµ†W(cid:48)ν + h.c. , (36) WW(cid:48)Z WW(cid:48)Z µν WW(cid:48)Z µν WW(cid:48)Z µν 1 (cid:16) (cid:17) (cid:16) (cid:17) L =− g(1) W† W(cid:48)µνh + h.c. + g(2) M W†W(cid:48)µh + h.c. , (37) hWW(cid:48) M hWW(cid:48) µν hWW(cid:48) W µ W with V ≡ ∂ V −∂ V , for V ≡ W, W(cid:48), Z. The cor- the RH gauge filed content is integrated out from the µν µ ν ν µ responding couplings are collected in Table I. Only the physical spectrum [41]. We will keep henceforth the La- LO Lagrangian L + L in (4)-(5) and the opera- grangiansin(4)-(5)andtheoperatorssetin(15)and(17) 0 0,R tors set in (15) and (17) have been kept for simplicity. for the analysis below. AdditionalcontributionsfromtheoperatorsP (h)and i,L P (h) (3rd and 2nd terms in Eq. (13)-(14)), and the i,R operators P (h) (2nd term in Eq.(16)) would lead i(j),LR A. WZ and Wh excesses toalargerparameterspaceanditisbeyondthescopeof this work. Many of those operators are also irrelevant at For a charge resonance around the TeV scale, the ratios lowenergiesastheircontributionbecomenegligibleonce M2/M2 and M2/M2 turns out to be negligible and Z W(cid:48) H W(cid:48) 6 W(cid:48) →WZ Coeff. 100fb 200fb <0 [−0.11, −0.06] [−0.07, −0.04] gW(1)W(cid:48)Z 4ce2W (cid:16)seR2 γW + 2scWW MMWW(cid:48) γC(cid:17) γC >0 [0.06, 0.11] [0.04, 0.07] (cid:16) (cid:17) <0 [−0.026, −0.018] [−0.018, −0.013] gW(2)W(cid:48)Z −4se2W seR2 γW − 2csWW MMWW(cid:48) γC γW >0 [0.018, 0.026] [0.013, 0.018] g(3) − e MW γ WW(cid:48)Z cWsW MW(cid:48) C TABLE II: Allowed negative and positive ranges for the coef- W(cid:48) →Wh ficients γC and γW (upper and lower rows) and for the values σ (W(cid:48)) ∼ 100−200fb [40] (3rd & 4th columns). The values jj gh(1W)W(cid:48) 4cWes3Rs2W γ(cid:101)W σσWWZZ((WW(cid:48)(cid:48)))∼and3−th1e0fcboe[4ffi2c]i,etnhteseaqCu,LivRal=encaeWr,eLlRat=ion1/σ2W,hw(eWre(cid:48))im≈- (cid:20) (cid:21) plemented for the W(cid:48) → WZ and W(cid:48) → Wh–decay widths gh(2W)W(cid:48) −sWe MMWW(cid:48) γC+ MMW2W2(cid:48) (γ(cid:101)C−γC) in (38)-(39) with the relations in (40)-(41). TABLE I: Effective couplings encoded by the Lagrangians the coefficients (γ , γ ) to vary simultaneously, we ob- LWW(cid:48)Z and LhWW(cid:48) in (36) and (37) respectively. The re- tain the allowed pCaramWeter space in Fig 2. The ranges lations g = e , g = e , g(cid:48) = e have been imple- L sW R cWsR cRcW arebasicallyofthesameorderofmagnitudesuggestedby mented through all the couplings, with e the electromagnetic theranges−0.02<γ <0.02and−0.016<γ <0.018 coupling constant. The coefficient γ stands for γ ≡ a γ , C W (cid:101)i (cid:101)i i i obtained from the stringent EW constrains on the Z- with i=C, W and a coming from the F(h)–definition in (2). i gauge masses and the S and T parameter bounds in [41] respectively. therefore the decay width for the processes W(cid:48) → WZ It is worth to point out the dependence of the ranges and W(cid:48) →Wh become written as inTableIIandtheparameterspaceinFig2ontheHiggs coefficientsa =a =1/2enteringinthehWW(cid:48)– C,LR W,LR c2 M5 (cid:16) (cid:17)2 couplingsthroughthelightHiggsfunctionin(2). Larger Γ(W(cid:48) →WZ)= W W(cid:48) g(2) , (38) 192π M4 WW(cid:48)Z values aC,LR = aW,LR ∼ 1 will reduce (enhance) the al- W lowed positive (negative) ranges of γ by one order of W magnitude with respect to those in Table II in the range g(1) (cid:18) M2 (cid:19)M5 σjj(W(cid:48))∼150−200fb, whereas part of the ranges of γC Γ(W(cid:48) →Wh)= hWW(cid:48) g(1) + g(2) W W(cid:48) . willbeslightlymodifiedandsomeothercanreachsmaller 48π hWW(cid:48) hWW(cid:48) M2 M4 W(cid:48) W values close to zero for small values of γ . The limiting (39) W case a = a ∼ 0 enhances the γ –ranges in- The cross sections for the processes pp → W(cid:48) → WZ C,LR W,LR W stead, but keeping the same order of magnitude of the and pp → W(cid:48) → Wh can be computed in terms of the ranges in Table II though. corresponding one for the decay pp→W(cid:48) →jj as σ (W(cid:48)) Γ(W(cid:48) →WZ) σ (W(cid:48)) Γ(W(cid:48) →Wh) WZ = , Wh = IV. Z(cid:48)–PREDICTIONS σ (W(cid:48)) Γ(W(cid:48) →jj) σ (W(cid:48)) Γ(W(cid:48) →jj) jj jj (40) A mass prediction for the neutral gauge field Z(cid:48) can be with σ (W(cid:48)) ≡ σ(pp → W(cid:48) → XX). Neglect- XX inferred from the relation (32) in terms of the W(cid:48)–mass ing the M /M –corrections induced by the operators W W(cid:48) andthegaugecouplingsg andg ,viathemixingangle P (h) and P (h) (see Eq. (34)), the width for the R Y C,LR T,LR θ in (27) and the relation in (33). Assuming the cou- decay W(cid:48) → jj can be related to the process W(cid:48) → t¯b R plingg intherangeg ≈0.45−0.6asdeterminedin[8] through the Lagrangian in (34) as R R and g ∼0.36, it is possible to predict the mass range Y Γ(W(cid:48) →jj)(cid:39)2Γ(W(cid:48) →t¯b)∼ gR2 M . (41) 2.5TeV < MZ(cid:48) < 4TeV. (42) 8π W(cid:48) The prospectives in detecting a Z(cid:48)-signal in the futures The Goldstone equivalence theorem requires Γ(W(cid:48) → colliderexperimentscanbetackledthroughthefermionic Wh) (cid:39) Γ(W(cid:48) → WZ) up to kinematic factors. In decay channels Z(cid:48) → {νLν¯L, NRN¯R, (cid:96)+(cid:96)−, tt¯, jj}, and this case the pp → W(cid:48) → Wh cross section satisfies via the gauge-scalar modes Z(cid:48) →{W+W−, Zh} as well, σ (W(cid:48)) ≈ σ (W(cid:48)). Implementing in addition the and will be analysed in the following section. Wh WZ results in (38)-(40), and requiring the cross section val- ues σ (W(cid:48)) ∼ 3−10fb implied by the ATLAS search WZ for pp → W(cid:48) → WZ → JJ [42] and σ (W(cid:48)) ∼ 100− A. Z(cid:48)-production decay modes jj 200fb [40], we obtain the ranges for the coefficients γ C (γ =0)andγ (γ =0)inTableIIandassumingthe ByconsideringtheneutralcurrentsfromLagrangiansL W W C 0 Higgs coefficient values a = a = 1/2. Letting and L in (4) and (5) respectively, it is possible to C,LR W,LR 0,R 7 f gfLfLZ(cid:48) gfRfRZ(cid:48) (cid:16) (cid:17) (cid:16) (cid:17) u e sR −γMW 2c2W+1 e sR − 3cR +4γMW sW 6cW cR MZ(cid:48) cWsW 6cW cR sR MZ(cid:48) cW (cid:16) (cid:17) (cid:16) (cid:17) d e sR +γMW c2W+2 e c2R+2 −2γMW sW 6cW cR MZ(cid:48) cWsW 6cW cRsR MZ(cid:48) cW N 0 − e 2cRcWsR (cid:16) (cid:17) ν − e sR +γMW 1 0 2cW cR MZ(cid:48) cWsW (cid:16) (cid:17) (cid:16) (cid:17) e − e sR −γ MW c2W e cR − sR −2γMW sW 2cW cR MZ(cid:48) cWsW 2cW sR cR MZ(cid:48) cW TABLE III: Z(cid:48)-fermion-couplings from the Lagrangian in (43). The relation Q = 1T3 + 1T3 +Y , with T3 ≡ 1τ3 , 2 L 2 R Q L(R) 2 L(R) emergesnaturallyfromthe fermion–photoncoupling inoursce- nario and it has been employed in all the listed couplings. In addition, the relations g = e , g = e , g(cid:48) = e have L sW R cWsR cRcW also been used, with e the electromagnetic coupling constant. FIG. 2: Allowed parameter space (γC, γW) by combining the Notation c2W ≡cos(2θW) and c2R ≡cos(2θR) is implicit. W(cid:48) → WZ and W(cid:48) → Wh–decay widths in (38)-(39) to- gether with the relations in (40)-(41). The cross section val- ues σ (W(cid:48)) ≈ σ (W(cid:48)) ∼ 3−10fb and σ (W(cid:48)) ∼ 100− Z(cid:48) →W+W− Wh WZ jj 150−200fb (brown, orange and red charts respectively) have (cid:16) (cid:17) been implemented and assuming the Higgs coefficient values g(1) e MW MW sR −γ cW a =a =1/2. WWZ(cid:48) 2cW MZ(cid:48) MZ(cid:48) cR sW C,LR W,LR g(2) e (cid:104)γ e2cR − MW (cid:16)MW sR −γ cW(cid:17)(cid:105) WWZ(cid:48) cW W 2sRs2W MZ(cid:48) MZ(cid:48) cR sW describe fermionic decay modes through Z(cid:48) →Zh LffZ(cid:48) =f=u(cid:88),d,N,ν,ef¯γµ (gfLfLZ(cid:48)PL+gfRfRZ(cid:48)PR) fZµ(cid:48) . gh(1Z)Z(cid:48) 2cWe3scRRs2W γ(cid:101)W (43) g(2) 2e (cid:104)sRsW +γ MW (cid:16)c2Rs2W +1(cid:17)− MZ(cid:48) (γ +γ)(cid:105) ThecouplingsgfLfLZ(cid:48) andgfRfRZ(cid:48) arelistedinTableIII. hZZ(cid:48) sW cRcW MZ(cid:48) c2R c2W MW (cid:101)C The self gauge and gauge-Higgs Lagrangians accounting for the gauge–scalar modes will be described by TABLE IV: Effective couplings encoded at the Lagrangians L = LWWZ(cid:48) and LhZZ(cid:48) in (44) and (45) respectively. The coef- WWZ(cid:48) ficient γ(cid:101)i stands for γ(cid:101)i ≡ aiγi, with i = C, W and ai the coefficient introduced in the F(h)–definition of (2). (cid:16) (cid:17) i g(1) W† WνZ(cid:48)µ + h.c. + ig(2) Z(cid:48) Wµ†Wν, WWZ(cid:48) µν WWZ(cid:48) µν (44) (couplings g(2) and g(1) ). These particular features WWZ(cid:48) hZZ(cid:48) enhance the corresponding leading order branching ra- tios of Z(cid:48) → W+W− and Z(cid:48) → Zh for a non–vanishing 1 g(2) LhZZ(cid:48) =−2MZ gh(1Z)Z(cid:48)ZµνZ(cid:48)µνh + hZ2Z(cid:48) MZZµZ(cid:48)(µ4h5). lefTt–hreighbtraonpcehriantgorfsra{cPtiCo,nLsR(ohf)t,hPeTZ,L(cid:48)R(bho)s,oPnWfo,LrRM(hW)}(cid:48).= 1.8−2 TeV, with g ≈ 0.45−0.6 and assuming a right The corresponding couplings are collected in Table IV. R handed neutrino mass2 m = m = m = 1.5 Contributions induced by the left–right custodial con- NRe NRτ ND TeV,hasbeencomputedforthefermionicdecaychannels serving operator PC,LR(h) and the custodial breaking Z(cid:48) → {ν ν¯ , N N¯ , (cid:96)+(cid:96)−, tt¯, jj}, and for the gauge- P (h) (encoded by the coefficient γ) are suppressed L L D D T,LR scalarmodesZ(cid:48) →{W+W−, Zh}inFig.3(upperplot). bythemassesratioM /M foralltheZ(cid:48)–fermioncou- W Z(cid:48) The Z(cid:48)–production cross section times branching frac- plingsinTableIII.Suchcontributionsturnouttobesup- tionsarecomputedatthe13TeVLHCandaredisplayed pressedbyonefactorofM /M lesswithrespecttothe W Z(cid:48) in Fig. 3 (lower plot). The coefficients γ and γ have leading order terms for the pure gauge and gauge–Higgs C W couplings in Table IV, but for the coupling g(2) , whose hZZ(cid:48) last term is enhanced by M /M due to the longitudi- Z(cid:48) W nal helicity components in the decay Z(cid:48) → Zh. On the 2 The Majorana masses mNe and mNτ turns out to be equal as otherhand,thecontributionsinducedbythekineticleft– the Ne and Nτ–fields formR a DiracRfermion (see [29] for more R R right operator PW,LR(h) are not MW/MZ(cid:48)–suppressed details). 8 • At M = 4TeV, the cross sections of Z(cid:48) {0.2, 0.04, 0.73}fb for fermionic decay modes cor- respondingly, and 0.01fb for gauge–scalar modes. The total Z(cid:48)–production cross sections of ∼1.0fb at M =4TeV, is dominated mainly by the dijet Z(cid:48) channel (71.7%) with complementary small contri- butionsfromthetop–pairmode(4.6%)andlepton– pair channel (20.7%), plus the W–pair and Zh modes (1.4% both). As it was pointed out before, and according to the cou- plings in Table III, the fermionic decay channels are slightly modified by the modifications induced by the operators {P (h), P (h)} as the involved effec- C,LR T,LR tive couplings are suppressed by M /M . Nonethe- W Z(cid:48) less,sizeablecontributionsaretriggeredonthegaugeand gauge-Higgsdecaymodesoncetheeffectiveoperatorsare switched on (Table IV). Fig. 4 shows the induced effects on the Z(cid:48)-production cross sections for a vanishing op- erators {P (h), P (h)} but P (h), at the 13 T,LR W,LR C,LR TeV LHC for M = 1.9 TeV. In particular, the corre- W(cid:48) sponding coefficient γ runs over the allowed parameter C space in Fig. 2 for γ =0 and at σ (W(cid:48))∼200fb (left W jj and right red charts), i.e, γ running over the ranges C [−0.07, −0.04] (upper plot) and [0.04, 0.07] (lower plot) from Table II. We predict then • In the negative range γ = [−0.07, −0.04], a C total Z(cid:48)–production cross sections of 68.1–66.2fb at M = 2.5, TeV and 1.86–1.58fb at M = FIG. 3: Branching fractions (upper plot) and Z(cid:48)–production Z(cid:48) Z(cid:48) 4TeV. There is an enhancement of (18.8–10.9)% cross section times branching fractions (lower plot) at the 13 and (38.7–21.5)% in the W–pair and Zh modes TeV LHC for MW(cid:48) = 1.8−2 TeV, with gR ≈ 0.45−0.6 and respectively at M = 2.5, TeV, while a raise of assuming a right handed neutrino mass m = 1.5 TeV. The Z(cid:48) ND (38.9–24.4)% and (82.6–49.7)% correspondingly at coefficients γ and γ have been set to zero. All the bands C W correspond to the mass range MW(cid:48) =1.8−2 TeV (central line MZ(cid:48) = 4, TeV. This leads to an associated en- ineachofthemcorrespondstoMW(cid:48) =1.9TeV).Thejj–bandis hancement in the total Z(cid:48)–production cross sec- thesumofthepartialwidthsfor{uu¯, dd¯, ss¯, cc¯, b¯b},whileνν¯– tions of (6.9–3.9)% at M =2.5, TeV and (60.4– Z(cid:48) bandisthesumofpartialwidthsintoSMneutrinos. Thebands 36.8)%atM =4, TeVwithrespecttothevanish- Z(cid:48) labelled with several decay modes stand for individual channels. ing operator case (thick lines in Fig. 4 upper plot). • In the positive range γ = [0.04, 0.07], a to- C tal Z(cid:48)–production cross sections of 64.6–66.7fb at been set to zero. All the bands in both plots correspond M =2.5, TeV and 1.86–1.58fb at M =4TeV. Z(cid:48) Z(cid:48) to the mass range MW(cid:48) = 1.8−2 TeV (central line in Anenhancementof(2.2–10.3)%and(9.6–29.5)%in each of them corresponds to MW(cid:48) = 1.9 TeV). Fig 3 the W–pair and Zh modes respectively at MZ(cid:48) = shows a preferred dijet decay channel rather than the 2.5, TeV, while a raise of (11.4–28.9)% and (33.4– top and lepton pair final states respectively. We predict 73.7)% correspondingly at M = 4, TeV. Con- Z(cid:48) for MW(cid:48) =1.9TeV sequently, an enhancement is observed in the to- tal Z(cid:48)–production cross sections of (1.4–4.7)% at • Z(cid:48)-production cross sections of {2.3, 7.1, 70.2}fb M =2.5, TeV and (22.2–51)% at M =4TeV Z(cid:48) Z(cid:48) at M =2.5TeV, through the lepton–pair, top– Z(cid:48) with respect to the vanishing operator case (thick pair and dijet channels Z(cid:48) → {(cid:96)+(cid:96)−, tt¯, jj} re- lines in Fig. 4 lower plot). spectively,while0.98fbforthegauge–scalarmodes Z(cid:48) → {W+W−, Zh}. The total Z(cid:48)–production SmalldeviationsfromtheGoldstoneequivalencetheorem cross section of 81.7fb at M = 2.5TeV re- in the decay widths Γ(Z(cid:48) →W+W−) and Γ(Z(cid:48) →Zh) Z(cid:48) spectively, mainly dominated by the dijet chan- areinducedbythenon-zerocontributionsoftheeffective nel (86%) with complementary small contributions operators {P (h), P (h)}. In addition, sizeable C,LR W,LR from the top–pair mode (8.7%) and lepton–pair enhancementistriggeredinthosechannelsduetotheef- channel (2.8%), plus the W–pair and Zh modes fective operators contribution. Such departures become (1.2% both). negligibleforsmallcoefficientsγ andγ , whoseranges C W 9 V. CONCLUSIONS The small mass peaks observed at ATLAS and CMS near the 1.8-2 TeV is described here via a W(cid:48)–model in- spiredbythelargerlocalgroupG =SU(2) ×SU(2) × L R U(1) in a non–linear EW dynamical Higgs scenario. B−L The W(cid:48)–production cross section at the 13 TeV LHC is around 700–1200 fb. We analysed the W(cid:48)–production and the constraints on the parameter space of our sce- nario entailed by the reported excesses in the WZ and Wh–final states (Table II and Fig. 2). We predict the existence of a heavy gauge boson Z(cid:48) in the 2.5–4 TeV mass range as well as some of its decay channels testable intheLHCRunII.Wedeterminethecrosssectiontimes branching fractions, shown in Fig. 3, for the dijet, dilep- ton and top–pair Z(cid:48)–decay channels at the 13 TeV LHC around 2.3, 7.1, 70.2 fb respectively, for M =2.5 TeV, Z(cid:48) while one/two orders of magnitude smaller for the di- jet/dilepton and top–pair modes at M = 4 TeV. Non- Z(cid:48) zero contributions from the effective operators, and the underlying Higgs sector of the model, will induce size- able enhancement in the W+W− and Zh–final states that could be probed in the future LHC Run II. Acknowledgements Theauthorsofthisworkacknowledgevaluablecomments fromJ.Gonzalez-Fraile. J.Y.alsoacknowledgesKITPC financial support during the completion of this work. FIG. 4: Z(cid:48)–production cross section times branching fractions at the 13 TeV LHC for MW(cid:48) = 1.9 TeV, and γC running over the ranges [−0.07, −0.04] (upper plot) and [0.04, 0.07] (lower VI. W(cid:48) HEAVY BOSON DECAY WIDTHS plot) following the values in Table II and the allowed parameter space for γ = 0 and σ (W(cid:48)) ∼ 200fb (left and right red W jj chartsinFig.2). ThickcurvescorrespondtoγC =0,whilstthe From the Lagrangian LudW(cid:48) in (34), one has line,dashedanddottedcurvesstandforthelower,intermediate g2 + g2 and upper γC–values according to the allowed ranges. Γ(cid:0)W(cid:48) →ud¯(cid:1)= uLdLW(cid:48) uRdRW(cid:48) M . (46) 16π W(cid:48) Thisdecaywidthalsoappliesforthefinalstatecs¯,while for t¯b one has Γ(cid:0)W(cid:48) →t¯b(cid:1)= gt2LbLW(cid:48) + gt2RbRW(cid:48) (cid:18)1− 3 m2t (cid:19) M 16π 2 M2 W(cid:48) are determined by the WZ and Wh excesses in the W(cid:48)– W(cid:48) (47) decays studied in Sect. IIIA (Table II and Fig. 2). The Theinvolvecouplingsabovearegivenbythecorrespond- effective coefficients a from the Higgs sector introduced i ing ones in (34) as in the F(h)–definition of (2), in particular a and C,LR a ,will fix the allowed parameter space (γ , γ ). √ M W,LR C W g =g λγ (cid:39)g W γ , g =−g Larger values aC,LR, aW,LR ∼ 1 will reduce (enhance) uLdLW(cid:48) L C L MW(cid:48) C uRdRW(cid:48) R the allowed positive (negative) γ –ranges by one or- (48) W der of magnitude, whereas part of the γ –ranges can Extending the Lagrangian L to the lepton–W(cid:48) in- C udW(cid:48) reach smaller values close to zero for small values of γ . teractions, one has W This feature would favour coefficients a and a C,LR W,LR g2 of order 1 in case of observing tiny departures with re- Γ(cid:0)W(cid:48) →ν ¯l(cid:1)= νllLW(cid:48) M , l=e, µ, τ (49) spect to the cross sections for the gauge–scalar modes l 48π W(cid:48) Z(cid:48) → {W+W−, Zh} in Fig. 3. Sizeable deviations, spe- cially for a larger MZ(cid:48)–values, would point towards in- Γ(cid:0)W(cid:48) →N ¯l(cid:1)= gN2llW(cid:48) (cid:18)1− 3MN2D(cid:19)M , l=e, τ termediate values a ∼ a ∼ 1/2 (as shown in D 48π 2 M2 W(cid:48) C,LR W,LR W(cid:48) Fig. 4) or smaller ones. (50) 10 The decay width for the Nµµ¯–final state is not reported Alltheinvolvecouplingsin(51)-(54)g andg R fLfLZ(cid:48) fRfRZ(cid:48) asnoµµjj–signalhasbeenobervedsofar. Thecouplings with f = u,d,N,ν,e, are listed in Table III. From the g andg correspondtothecouplingsin(48) effectiveLagrangianL in(44)onehas,fortheW– νLlLW(cid:48) NllRW(cid:48) WWZ(cid:48) respectively. The decay widths for the final states WZ pair final state and Wh have been given in (38)-(39). VII. Z(cid:48) HEAVY BOSON DECAY WIDTHS (cid:16) (cid:17)2 Γ(cid:0)Z(cid:48) →W+W−(cid:1)= gW(2)WZ(cid:48) MZ4(cid:48) M . (55) The Z(cid:48)-heavy boson decays are reported here for the 192π M4 Z(cid:48) W fermionicchannelsaswellasthegaugeandgauge–scalar modes. FromtheeffectiveLagrangianL in(43)itis ffZ(cid:48) possible to compute for the leptonic pair final states g2 + g2 Γ(cid:0)Z(cid:48) →l+l−(cid:1)= lLlLZ(cid:48)24π lRlRZ(cid:48) MZ(cid:48), l=e, µ, τ TnahleheexlitcriatyfaccotmorpoMnZe4n(cid:48)/tMinW4 tchoemdeescafryomZ(cid:48)th→e loWng+itWud−i-, (51) being compensated by the quadratic inverse term from Γ(Z(cid:48) →ν ν¯)= gν2lνlZ(cid:48) M (52) bgW(l2e)WIVZ)(cid:48).foAranovna-nziesrhoinogpoerpaetroartocroncotrnitbruibtiuotniolnea(dlosotkoaatdTdai-- l l 24π Z(cid:48) tionaltermsenhancedbytheextrafactorasitisreflected in Fig 4. Finally, for the Zh–final state, one has (cid:115) g2 M2 (cid:18) M2 (cid:19) Γ(cid:0)Z(cid:48) →N N¯ (cid:1)= NlNlZ(cid:48) 1−4 ND 1− ND M D D 24π M2 M2 Z(cid:48) Z(cid:48) Z(cid:48) (53) g(1) (cid:18) M2 (cid:19) M4 For the quark–antiquark final states one has Γ(Z(cid:48) →Zh)(cid:39) hZZ(cid:48) g(1) + Z g(2) Z(cid:48) M . 192πc2 hZZ(cid:48) M2 hZZ(cid:48) M4 Z(cid:48) W Z(cid:48) Z g2 + g2 (56) Γ(Z(cid:48) →qq¯)= qLqLZ(cid:48) qRqRZ(cid:48) M , q =u, d. 8π Z(cid:48) (54) The involve couplings are listed in Table IV. [1] G. Aad et al. [ATLAS Collaboration], arXiv:1506.00962 and J. H. Yu, Phys. Rev. D 92, 055030 (2015) [hep-ex]. See also G. Aad et al. [ATLAS Collaboration], [arXiv:1506.07511 [hep-ph]]; Q. H. Cao, B. Yan and Eur. Phys. J. C 75, 69 (2015) [arXiv:1409.6190 D. M. Zhang, arXiv:1507.00268 [hep-ph]; T. Abe, [hep-ex]]; Eur. Phys. J. C 75, 209 (2015) T. Kitahara and M. M. Nojiri, arXiv:1507.01681 [arXiv:1503.04677 [hep-ex]]. [hep-ph]; A. E. Faraggi and M. Guzzi, arXiv:1507.07406 [2] V. Khachatryan et al. [CMS Collaboration], JHEP [hep-ph]. 1408, 173 (2014) [arXiv:1405.1994 [hep-ex]]; JHEP [10] J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and 1408, 174 (2014) [arXiv:1405.3447 [hep-ex]]; J. Tattersall, arXiv:1507.00013 [hep-ph]. [3] V. Khachatryan et al. [CMS Collaboration], Eur. Phys. [11] J. A. Aguilar-Saavedra, arXiv:1506.06739 [hep-ph]; J. C 74, 3149 (2014) [arXiv:1407.3683 [hep-ex]]. A. Thamm, R. Torre and A. Wulzer, arXiv:1506.08688 [4] CMS Collaboration, CMS-PAS-EXO-14-010 (2015). [hep-ph]; A. Carmona, A. Delgado, M. Quiros and [5] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. J. Santiago, arXiv:1507.01914 [hep-ph]; Y. Omura, D 91, 052009 (2015) [arXiv:1501.04198 [hep-ex]]. See K. Tobe and K. Tsumura, Phys. Rev. D 92, no. 5, alsoG.Aadet al.[ATLASCollaboration],Phys.Rev.D 055015 (2015) [arXiv:1507.05028 [hep-ph]]; L. Bian, 91, 052007 (2015) [arXiv:1407.1376 [hep-ex]]. D.LiuandJ.Shu,arXiv:1507.06018[hep-ph];P.Arnan, [6] J.C.Pati, A.Salam, Phys. Rev. D10, 275(1974). D. Espriu and F. Mescia, arXiv:1508.00174 [hep-ph]; [7] R.N.Mohapatra, J.C.Pati, Phys. Rev. D11, 566(1975); D. Kim, K. Kong, H. M. Lee and S. C. Park, R.N.Mohapatra, J.C.Pati, Phys. Rev. D11, 2558(1975); arXiv:1507.06312 [hep-ph]; B. C. Allanach, P. S. B. Dev G.Senjanovic, R.N.Mohapatra, Phys.Rev.D12, and K. Sakurai, arXiv:1511.01483 [hep-ph]; 1502(1975). D. Aristizabal Sierra, J. Herrero-Garcia, D. Restrepo [8] B. A. Dobrescu and Z. Liu, arXiv:1506.06736 [hep-ph]; and A. Vicente, arXiv:1510.03437 [hep-ph]; arXiv:1507.01923 [hep-ph]. J. A. Aguilar-Saavedra and F. R. Joaquim, [9] J. Hisano, N. Nagata and Y. Omura, Phys. Rev. D 92, arXiv:1512.00396 [hep-ph]. J. de Blas, J. Santiago and 055001 (2015) [ arXiv:1506.03931 [hep-ph]]; K. Cheung, R. Vega-Morales, arXiv:1512.07229 [hep-ph]; A. Sajjad, W. Y. Keung, P. Y. Tseng and T. C. Yuan, arXiv:1511.02244 [hep-ph]; P. S. Bhupal Dev and arXiv:1506.06064 [hep-ph]; Y. Gao, T. Ghosh, K. Sinha R. N. Mohapatra, Phys. Rev. Lett. 115 (2015) 18,