ebook img

dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster PDF

20 Pages·2017·1.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster

International Journal o f Molecular Sciences Review dFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster ValeriaSpecchia,SimonaD’Attis,AntoniettaPuricellaandMariaPiaBozzetti* DipartimentodiScienzeeTecnologieBiologicheedAmbientali(DiSTeBA)—UniversityofSalento,73100Lecce, Italy;[email protected](V.S.);[email protected](S.D.);[email protected](A.P.) * Correspondence:[email protected];Tel.:+39-832-298681 AcademicEditor:MartinPichler Received:1March2017;Accepted:10May2017;Published:16May2017 Abstract: Fragile-Xsyndromeisthemostcommonformofinheritedmentalretardationaccompanied by other phenotypes, including macroorchidism. The disorder originates with mutations in the Fmr1 gene coding for the FMRP protein, which, with its paralogs FXR1 and FXR2, constitute a well-conserved family of RNA-binding proteins. Drosophila melanogaster is a good model for the syndrome because it has a unique fragile X-related gene: dFmr1. Recently, in addition to its confirmedroleinthemiRNApathway,afunctionfordFmr1inthepiRNApathway,operatingin Drosophilagonads,hasbeenestablished. InthisreviewwereportasummaryofthepiRNApathways occurringingonadswithaspecialemphasisontherelationshipbetweenthepiRNAgenesandthe crystal-Stellatesystem;wealsoanalyzetherolesofdFmr1intheDrosophilagonads,exploringtheir geneticandbiochemicalinteractionstorevealsomeunexpectedconnections. Keywords:FMRP/dFmr1;fragile-Xsyndrome;piRNApathway;crystal-Stellatesystem;dFmr1interactors 1. Introduction 1.1. TheFragile-XMentalRetardationGene dFmr1istheDrosophilahomologofthegeneresponsibleforfragile-Xmentalretardationsyndrome, one of the most frequent inherited causes of human mental retardation. Humans have three homologousgenescodingfortheFragile-XMentalRetardationProteins: Fmr1,FXR1,FXR2,withhigh sequencesimilarity;allofthemcodeforRNA-bindingproteins[1–3]. MutationsinFmr1,locatedon theXchromosomeandcodingforFMRPproteins,areresponsibleforthesyndrome. FMRPandits autosomalparalogs,theFragileX-RelatedproteinsFXR1PandFXR2P,constituteaconserved,small familyofRNA-bindingproteins. FMRPhasbeenstudiedinhumans,mice,andDrosophila,principally inrelationtoitsroleinthenervoussystem,atthesynapses,asatranslationalregulatorworkingwith differenthypothesizedmechanisms: (i)byrepressingtranslationalinitiation[4–6];(ii)bythemiRNA pathwaybindingtothe3(cid:48) endoftargetmRNAs[7–12];and(iii)bydirectinteractionwithtranslating ribosomes[8,12–15]. ThehumanFMRPisexpressedindifferenttissuesduringdevelopment,with apreferenceforthegonadsandthebrainand,asexpected,themaineffectsofitslossareinthebrain andthetestes[16]. Drosophilamelanogasterisconsideredagoodmodelforfragile-Xsyndrome[17]becauseithas asingle,well-conservedfragileX-relatedgenenameddFmr1[18,19],exhibitinghighsequencesimilarity with all three human genes, and is predicted to be ancestral to the three mammalian members. dFmr1mutantfliesexhibitdefectsinneuronalstructureandfunction,andingermlinedevelopment, resemblingthoseobservedinFmr1mutationsinmiceandhumans[19,20]. ThehumanFMRPand Drosophila dFmr1 exhibit similar structures and domains [21]; they contain two KH domains, two Tudor domains, and an RGG box, in addition to a nuclear localization signal (NLS) and a nuclear Int.J.Mol.Sci.2017,18,1066;doi:10.3390/ijms18051066 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2017, 18, 1066 2 of 20 resembling those observed in Fmr1 mutations in mice and humans [19,20]. The human FMRP and IDntr.oJ.sMopohl.ilSac i.d2F01m7,r118 ,e1x0h66ibit similar structures and domains [21]; they contain two KH domains2, otfw2o0 Tudor domains, and an RGG box, in addition to a nuclear localization signal (NLS) and a nuclear export signal (NES) [2,3,21–24] (Figure 1). The high conservation between the two proteins suggests exportsignal(NES)[2,3,21–24](Figure1). Thehighconservationbetweenthetwoproteinssuggests a common molecular role that is also supported by the phenotypes in the mutants. acommonmolecularrolethatisalsosupportedbythephenotypesinthemutants. FMRP has a wide spectrum of functions; however, its main role is exerted in different small FMRP has a wide spectrum of functions; however, its main role is exerted in different small RNA-mediated pathways in humans and in the mouse and Drosophila models. The majority of the RNA-mediatedpathwaysinhumansandinthemouseandDrosophilamodels. Themajorityofthe studies regarding the small RNA pathways in Drosophila have been conducted in the ovaries, leading studiesregardingthesmallRNApathwaysinDrosophilahavebeenconductedintheovaries,leading to the identification of specific molecular functions of dFmr1. totheidentificationofspecificmolecularfunctionsofdFmr1. FFiigguurree 11.. DDoommaainino rogragnainziaztaiotinono foDf rDosroopshoiplhaialan danhdu mhuanmFamn rF1m.Tr1h.e Tdhrea wdirnagwsianrgesn aortet onosct atloe ;stchaelee;x tahcet peoxsaictti opnossoitfiothnse aomf tihneo aamcidinsoa areciidnsd aicraet eindd.iTcDat1eda.n TdDT1D a2nadr eTtDud2 oarred otumdaoirn sd;oNmLaSinssta; nNdLsSf osrtannudcsl efaorr lnoucaclleizaart ilooncasliigznaatilo;nN EsiSgnstaaln; dNsEfSo rsntauncdlesa rfoerx pnourctlesiagrn eaxl;pKoHrt 1s,iKgnHa2l;, aKnHd1R, GKGHm2, oatnifda rReGinGd imcaotetidf .are indicated. 1.2. DrosophilaSmallRNAPathways: AnOverview 1.2. Drosophila Small RNA Pathways: An Overview DifferentclassesofsmallRNAshavebeendescribedandcharacterizedinthelasttwodecades; theyhDaivffeerdeinffte crelanstsbeiso ogfe snmesaisll aRnNdAfusn hcativoen bseaennd dbeeslcornibgetdo adnifdfe crhenatrascmtearlilzRedN Ain pthaeth lwasaty tswdoe dpeencaddinegs; othnewy hhicahveA rdgioffneareuntet pbriootgeeinnetshise yainndte rfaucntcwtioitnhs. Samnda llbRelNonAgs btoin dditfofesrpenect ifiscmAalrlg oRnNaAut eppartohtweianyss, fdoerpmeinndgindgif foenr ewnhtiRchIS ACrcgoomnapuletex epsrothteaitn itnhietiya tientpearathctw wayitsh.l eSamdainllg RtNoAdsif fbeirnedn ttop ospste-ctirfaicn sAcrrigpotnioanuatel apnrdotetrinans,s crfioprtmioinnagl tadrigffeetrerengt ulRatIiSoCn [2c5o]m. pTlhexeetsh retehamt aiinnistimatael l RpNatAhwpaaytsh wlaeyasd,inagls otcoa lleddiffRerNenAt ipnotesrt-fetrraennsccer(iRptNioAnia)lp aanthdw traaynss,carriep:ti(oi)ntahle tasirRgNetA repgautlhawtioayn ([a2n5d]. tThheer tehlarteeed menaidno s-smiRaNll ARNpaAth pwatahyw)tahyast, uaslseos acasmlleadl lRRNNAA minotleercfuerleenscoef 2(1R–N23Ani)u cplaetohtwidaeyssa, nadreA: g(oi)2 athsei tssidReNdiAca tpeadthAwrgaoyn (aauntde ptrhoet erinela[2te6d]; (eiin)dtoh-esimRNiRAN Apapthawthawya) yththaat tuusseess as msmalallRl NRANsAa smloolnegcualsest hoef s2iR1–N2A3 sn,uacnldeoetxidheibs itanadv eArygop2e causl iiatrs bdieodgiecnaetesdis ;AirngoDnraousotpeh pilraottheien m[2iR6]N; A(iis) athree gmeinReNraAte dp,atvhiwaaayt wthoa-ts tuespesp rsomcaelsls ,RfNroAms eans dloonggen aosu tshlye tsriaRnNscArisb, eadnpdr imexahriybimt iaR NveArsy. mpeiRcuNliAars gbuioidgeenAegsois1; ,itnh eDArrogsoopnhaiulat etphreo tmeiinRpNrAedso amrein agnetnlyeriantveodl,v vediai na tthwisop-sattehpw payr,otcoesosb, tafrinoma treanndsolagteionnoaulsrleyp rtersasnioscnriobfetdh epmriRmNaAry tamrgiRetNsA[2s7., 2m8]i;R(iNii)Atsh egpuiiRdNe AApgaot1h,w tahye tAhragtownaasutfier pstrodtiesicno vperereddominintahnetlgyo innavdosl,veadn dinw thasis ppraetdhowmaiyn,a tnot loybtcaoinns aid terraendsltahtieongaoln raedparle-ssspieocni fiocf pthaeth mwRayN[A29 t–a3r2g]eetsv e[2n7t,h2o8]u; g(hii,i)r ethceen ptliyR,NthAe ppiaRtNhwAapya tthhawt awyahsa fsiraslts odibseceonveforeudn dini nthteh egonneravdosu, sansyds twemas nporetdoonmlyininanDtrlyos coopnhisliadbeuretda ltshoe ignomnaicdea[l3-s3p,3e4c]if.iPc ipwait-hinwtearya c[2ti9n–g32R]N evAesn( pthiRouNgAhs, )reacreenlotlnyg, ethret hpainRNthAe optahtehrwcalays hseass oaflssom baelelnR NfoAunsd(2 i3n– t3h2en ntelrovnogu)sa snydstPemiw in,oAt uobnelyrg iinn eD(rAosuobph),ilaan bduAt agloso3 ,idn emfiniceed [3a3s,3th4e]. PPiiwwii-siunbtefraamctiilnygp RroNteAinss (,pairReNthAesA) argreo nloanugteerp trhoatnei tnhsei novthoelvr ecdlaisnsetsh oisf ssimleanlcli RngNpAast h(2w3a–y3.2T nht elopniRg)N aAnds pPriowtei,c tAaunbiemrgailncee l(lAs ufrbo)m, atnhde dAeg-ore3g, udlaetfiionnedo fast rathnes pPoiswoni ssuabnfdamotihlye rprreopteeitnitsi,v eargee ntheeti cAerlgeomneanuttse, pprreosteerivnisn igngveonlvoemde inst tahbiisl istyile[n35c,i3n6g] .pAatlhthwoauyg.h Tthhee pthiRreNeAmsa pinroRteNcAt ainpiamthawl caeylslse fxrhoimbi tthsep edcei-fircegfeualtautiroens aonf dtrcaonmsppoosnonens tasn,dth oertheeirs rseopmeetiteivveid geennceetitch aetletmheeyntssh, aprreesseormviencgo gmepnoonmeen ststaobrilfiutyn c[3ti5o,3n6s]w. Aitlhthootuhgehr pthaeth twhraeyes mrealiante RdNtoAtih peaRthNwAayms eetxahbiobliits smpe[3ci7f–ic4 2fe].atures and components, there is some evidence that they share some components or functions with other pathways related to the RNA metabolism [37– 1.3. piRNAGenesAreConservedduringEvolution 42]. Piwi proteins and the piRN A genes have been identified in model organisms and also in humans. They are deeply conserved in evolution even though the molecular mechanisms in which they are involved are not completely understood. The mouse is the animal in which many studieshavebeenconducted,demonstratingthatthepiRNA-mediatedsilencingoftransposonsis active in the male germline to ensure fertility [43]. The role of piRNAs and the conservation of peculiar elements belonging to the piRNA pathway, such as the Piwi proteins, Vasa, Maelstrom, Int.J.Mol.Sci.2017,18,1066 3of20 MOV10L1/Armitage, Tudor domain proteins, and others, suggest that they may act to protect animalcellsfromtransposableelements,keepingthemsilencedandensuringgenomestabilityinthe gonads[36,44–48]. AcomprehensiveanalysisandannotationofhumanpiRNAsinadulthumantestes hasrevealedarelationshipbetweenthesmallRNAsandtransposons[49]. However,thedirectrole ofthepiRNApathwayinthesilencingofTEshasnotbeenclarifiedsofar. AlinkbetweenthePiwi humangenes(PIWIL1,PIWIL2,andPIWIL4)andthetransposonshasbeenindirectlydemonstrated inthetumorigenesisofhumantestes. Inparticular,theepigeneticinactivationofthePiwiproteins and the Tudor protein TDRD1 causes a reduction in piRNA expression in addition to the DNA hypomethylationofLINE1,anactivehumantransposon[50]. 2. ThepiRNAPathwayinDrosophilaGonads ThepiRNA-mediatedpathwayisinvolvedinthetranscriptionalandpost-transcriptionalsilencing ofthetransposableandrepetitiveelementsofthegenome. Itoccurspredominantlyinthegermcells andintheirsomaticprecursorsinthegonadsofbothsexesandisrequiredforfertilitynotonlyin flies but also in mammals [35,51]. Most of what has been found on the piRNAs biogenesis, their roles,andthepiRNA-relatedgenesinDrosophilacomesmainlyfromacombinationofgeneticsand deepsequencingapproaches. Genome-widescreenstogetherwithtranscriptomicanalyseshavebeen performed with the aim to identify as many piRNA-related genes as possible [52–54]. Both germ cells and their somatic precursors use the piRNA pathway to silence transposable elements (TE). ThebiogenesisofpiRNAsstartswiththetranscriptionofspecificgenomicclusterslocatedatdifferent positions in the genome; they are composed of repetitive, non-functional relicts of transposable elements [29]. Two main types of piRNA clusters have been described, both transcribed by RNA PolymeraseII:uni-strandclusters,likeAT-X1andcluster2(germlinespecific)andflamenco(somatic specific), transcribed as single-strand precursors; and dual-strand clusters, like 42AB and 80EF (germline-specific)[55–57],transcribedfrombothstrands[29,31,51]. ClustersproduceRNAprecursors thatareprocessedintopiRNAsintheperinuclearregionofthegonadalcellscalled“nuage”,which surroundsthenuclearenvelope[58–62]. AlthoughtherolesofthepiRNA-relatedgenesarealmostthe sameinthegonadsofbothsexes,somedifferencesexist[63,64]. 2.1. ThepiRNAPathwayintheOvary MostoftheknowledgeaboutthepiRNApathwaycomesfromstudiesintheDrosophilaovary. Aftertheirtranscription,thepiRNAprecursorsenterdifferentpathwaysdependingonwhichpiRNA will be produced and in which type of cell it will function, somatic or germline. In the somatic primarypiRNApathwayoccurringinthefolliclecells,thepiRNAprecursorsundergoacleavageby theendonucleaseZucchini,whichseemstohavearoleingeneratingboththe5(cid:48) andthe3(cid:48) endofthe primarypiRNAs[29,40,65–67]. Theypossessastrong1Ubiasand,aftertheirproduction,theyare boundtoPiwiandtootherproteins(HelicasesandTudordomainproteins)involvedinthepathway andlocatedinthestructurecalledtheYb-body[68]. Afterthat,maturepiRNAsenterthenucleusto exertTEtranscriptionalsilencing[65,66,69–72]. TheinteractionbetweentheTudorproteinYb,oneof thekeycomponentsoftheYbbody,andtheRNAhelicaseArmitagehaveafundamentalroleinthe entranceofPiwiintothenucleus[72],whereitisinvolvedintheH3K9me3-mediatedtranscriptional silencingoftransposons. Aftertheirtranscription,theprimarypiRNAintermediatesplacethemselves inawell-definedstructurecalledaflam-bodyorDotComadjacenttotheYb-body[73,74]. Theprimarypathwayalsooccursinthegermcells,nursecells,andoocyte,producingprimary piRNAs. TheimmaturepiRNAstranscriptsaretransportedbytheDEADboxhelicaseUAP56[75,76], to the perinuclear region of the cytoplasm, the nuage, where a multi-protein perinuclear complex operates. ThePiwicladeproteinsAubergine(Aub)andArgonaute-3(Ago3)arethenboundtothe primarypiRNAsandenterthegermlinespecialized“ping-pong”amplificationcyclewiththesetwo proteinsasprotagonistsinthenuagetoproducethesecondarypiRNAsthatsilenceTEs[29,35,51,77,78]. ThepiRNAsproducedbytheping-pongamplificationloopshowconservedspecificsignatures,likeA Int.J.Mol.Sci.2017,18,1066 4of20 in10thpositionoftheRNA(10Abias)[51]. Piwiseemsnottobeinvolvedinthegermline-specific primarypathway[51,79–82]. Many proteins involved in piRNAs biogenesis and transposon silencing, such as Aubergine, Ago3,Vasa,Krimper,Tudor,Spindle-E,Tejas,andKumo/Qinarelocalizedinthenuage[51,61,83–88]. AlthoughforsomeoftheseproteinsthemolecularmechanismofthepiRNApathwayisnotcompletely clarified, the complex framework of interactions and actions continues to be enriched with new discoveries. TheTudorproteinKrimper,forinstance,hasakeyroleintheformationofthenuage, leadingtoaninteractionbetweenAubandAgo3[87,89],eventhoughitsroleseemstobedifferentin thepiRNApathwaysofovariesandtestes,whereitisrequiredinassociationwithAubergineforthe properlocalizationofitselfandAubergineatthenuage[63,64]. 2.2. ThepiRNAPathwayintheTestesandItsRoleinthecrystal-StellateRegulation The“crystal-Stellatesystem”wasfirstdescribedasanexampleofheterochromatin–euchromatin interaction[90,91]. StellateandcrystalorSu(Ste)arehomologousrepetitivesequenceslocatedmainlyat threedifferentpositionsonthesexualchromosomes: StellaterepeatsarelocatedontheXchromosome, attheeuchromatic12Eregionandattheheterochromatich26region;crystalisontheYath11region. Allofthemarerepetitivehomologoussequencesdifferinginsomefeatures[91–95]. Maleslacking thecrystalregionexhibitcrystallineaggregatesintheirspermatocytes[96,97]. Inadditiontocrystals, thesemalesalsoshowdefectsinchromosomecondensationandsegregation. TheStellateandcrystal loci are normallysilent; however, deficiencies in the crystal region lead tothe de-repression ofthe Stellate sequences in the germline. At the molecular level, the loss of the crystal region results in the production of a testes-specific Stellate mRNA of 750 bases in length [93,98,99]. In 1995 we discovered that the Stellate protein, produced by the Stellate mRNA, is the main component of crystallineaggregates[100]. Anearlygeneticscreeningpermittedustoidentifysomemodifiersof thecrystal–Stellateinteractionamongwhichareaubstingandhsp83scratch[98,99,101]. In2001itbecame clear that the crystal-Stellate regulation occurs by the small-RNA-mediated pathway [30,102,103], which, later, was identified as the specialized piRNA pathway [29,35,51,64,83,95]. In fly testes the mostabundantpiRNAsassociatedwithAubergineandAgo3correspondto“crystal”piRNAs[83]. Thisfindinghasreinforcedtherelationshipbetweencrystal-StellateregulationandthepiRNApathway. Indeed,thede-regulationofthecrystal–Stellateinteractionrepresentsasimplereadouttoidentifygenes involved in the piRNA pathway in testes [95,98,99,101,104,105]. Many genes have been assigned to the piRNA pathway, and the majority of them came from studies in ovaries [51,77,106,107]. Eventhoughnosystem-widescreeninghasbeenperformedtodateinsearchingforpiRNA-mediated genes in testes, our group and others analyzed a wide variety of mutations of piRNA genes in relation to their role in the crystal–Stellate interaction. The main features of several piRNA genes identifiedduringtheyearsaresummarizedinTable1,wheretheirdomains,functions,localization, cellular sub-localization, and especially their relationship with the crystal-Stellate regulation are highlighted[32,35,38,53,57,61,64–66,69–71,73,75,76,78,81–86,88,95,99,101,104,105,108–128]. From the analysisofthetableandfromFigure2,whereaVenn-likediagramisreported,showingthedistribution of the genes listed in Table 1, it is clear that all the crystal-Stellate modifiers are piRNA-related genes, although the opposite is not true. A crucial point regards Piwi that is not involved in the piRNA-mediatedsilencingofStellateinthetestes: nonetheless,itisfundamentaltopiRNAbiogenesis intheovaries. SincePiwiseemsnottoberequiredinthegermlineprimarypathway,atleastinthe ovary[64,79–82,129],itisconceivablethatthesilencingoftheStellatesequencesmainlyrequiresthe germlineprimarypathway;thisisalsosupportedbytheobservationthattheStellate-relatedpiRNAs sharesomesignaturesoftheping-pongpathway[64,83,95,128]. However,manygenesrequiredforthe ping-pongamplificationintheovaryarealsorequiredforthesilencingoftheStellatesequencesandof thetransposonsintestes(Table1). Furthermore,theobservationsthatPiwiandRhinoarerequiredin thefirststepofthepiRNAbiogenesisintheovaries[82]andthatbothproteinsarenotrequiredfor Stellate-relatedpiRNAbiogenesisintestesindicatethatdistinctpathwaysoccurinthegonadsofboth Int. J. Mol. Sci. 2017, 18, 1066 5 of 20 that the Stellate-related piRNAs share some signatures of the ping-pong pathway [64,83,95,128]. However, many genes required for the ping-pong amplification in the ovary are also required for the silencing of the Stellate sequences and of the transposons in testes (Table 1). Furthermore, the oInbt.sJe.rMvoalt.iSocni.s2 0t1h7a,t1 8P,i1w06i6 and Rhino are required in the first step of the piRNA biogenesis in the ov5aorife2s0 [82] and that both proteins are not required for Stellate-related piRNA biogenesis in testes indicate that distinct pathways occur in the gonads of both sexes (the mechanism of primary piRNA sexes(themechanismofprimarypiRNAproductioninthegermlinecouldbedistinctfromthepiRNA production in the germline could be distinct from the piRNA production in the ovary) [63,87,89]. productionintheovary)[63,87,89]. FFiigguurree 22.. TThhe emmajaojroirtyit yofo fthteh egegremrmlinlien eanadn dsosmoamtiact ipciRpNiRAN Agengeesn easrea rcerycsrtayls-tSatle-lSlatetlel amteomdiofiderifis.e rAs . VAeVnenn-lnik-leik deiadgiargamra mis irserpeoproterdte,d s,hsohwowinign gthteh edidsitsrtirbiubtuiotino nofo fththe e262 6ppiRiRNNAA ggeenneess lilsistetedd inin TTaabbllee 11,, iinn tthhrreeee ggrroouuppss:: tthhee ““GGeerrmmlliinnee”” ggrroouupp rreepprreesseennttss tthhee ppiiRRNNAA ggeenneess wwiitthh aa llooccaalliizzaattiioonn iinn tthhee ggeerrmmlliinnee;; tthhee ““SSoommaa”” ggrroouupp rreepprreesseennttss tthhee ppiiRRNNAA ggeenneess wwiitthh aa llooccaalliizzaattiioonn iinn tthhee ssoommaattiicc ppaarrtt ooff tthhee ggoonnaadd;; tthhee ““ccrryyssttaall--SStteellllaattee mmooddiiffiieerrss”” ggrroouupp rreepprreesseennttss tthhee ggeenneess wwiitthh aa rroollee iinn tthhee ssiilleenncciinngg ooff tthhee SStteellllaattee sseeqquueenncceess.. TThhee ddiissttrriibbuuttiioonn ooff tthhee ppiiRRNNAAg geenneessi nint htheet hthrereeeg rgoruopuspsis irse rpeoprotertdedb ebloewlo:wG: eGremrlminlein(e1 )(1->) -c>u tcouftfo;fSf;o Smoam(a1 )(1->) -Y> bY;bG; eGrmerlminlein+e S+o Smoam(a3 )(3->) -p>i wpiiw,tiu, dtuord,orrh, irnhoi;nGo;e Grmerlminlein+ec +r ycsrtyaslt-aSlt-eSlltaetlelamte omdoifideirfsie(r8s) -(>8)a -u>b earugbienreg,iangeo, 3a,gvoa3s,a ,vsapsian, dslpe-inEd,ltea-pEa,s ,tatepjaass,, steqjuaass, hs,qcuaapsshu,l eceanp.su(UleAenP. 5(6UhAaPs5n6o thbase ennoat nbaelyenze adnianlyrezleadti oinn rteolathtieonc rytos tathl-eS tcerllyasttealr-eSgteulllaatteio rne)g.uGlaetrimonl)i.n eGe+rmSolminae ++ cSroymstaal -+S tcerlylasttealm-Sotedlliafiteer ms(o8d)i-f>ierasg o(18,) a-r>m aitgaog1e,, akrrmimitpaegre,,z ukrcicmhipneir,,q zinu/ckcuhminoi,, dqFinm/rk1u,mshou, tddFomwnr1,,h ssph8u3td.o(vwrnet,e nhsop,8p3ap. i(,vergegtelensos,, rphaipnio, ,emggaelelsstsr,o rmh)inhoa, vmeaneolsttbroemen) haanvaely nzoedt bineerne laantiaolnyzteodt hine rcerylasttiaol-nS tteol ltahtee rcergysutlaalt-iSotnel.late regulation. Int.J.Mol.Sci.2017,18,1066 6of20 Table1. piRNA-relatedgenesandthecrystal-Stellateregulation. Thebest-knownpiRNAgenes,withtheirdomainsandlocalizationsreported. Abbreviations: N=nuclear;C=cytoplasmic;ND=notdetermined;theasterisks(*)indicatethattheproteinislocatedatthepiNGbodies;“+”indicatesthepresenceoftheprotein and/orofthecrystals;“++”indicatesahighpresenceoftheproteinand/orofthecrystals;“++++”indicatesaveryhighpresenceoftheproteinand/orofthecrystals, “++”,whereindicatedtheinformationareontheRNAcodingforcrystals;“?”indicatesthattheinformationarenotavailable. Stellate-Made Mutants ProteinDomains ProteinLocalization Testes Ovaries ProteinFunction Transposons References Crystals ArgonauteProteins ping-pongpathway, aubergine PAZ,MID,PIWI germline(C-nuage);germgranules +* + germinal + [35,38,78,83,88,108] primarypathway ago3 PAZ,MID,PIWI germline(C-nuage);germgranules +* + ping-pongpathway germinal + [35,70,71] piwi PAZ,MID,PIWI soma+germline(nuclear) + + primarypathway germinal+somatic - [83,84,109] ago1 PAZ,PIWI soma,germline(C-nuage) +* + piRNApathway,miRNApathway somatic + [105,111] Helicases armitage RNAhelicase(SDE3) soma(C-Ybbodies)+germline(C) + + primarypathway germinal+somatic + [70,71,112–114] germline(Amplifier vasa DEADRNAhelicase +* + primary+ping-pongpathway germinal+somatic ++(RNA) [84,86] Complex-C-nuage);germgranules UAP56 DEADRNAhelicase germline(N)+N/Cboundary ND + primary+ping-pongpathway germinal+somatic ND [73,75] TudorProteins DEADRNAhelicase+ primarypathway(singlestrand Yb soma(C-Ybbodies) ND + somatic - [32,70,71,113,114] Tudordomain clusters(flamenco)) DEADRNAhelicase+ spindle-E germline(C-nuage) +* + primarypathway germinal + [61,84,104] Tudordomain germline(C-nuage)+soma krimper Tudordomain + + germinal ++++ [61,115] (krimperbody) germline(C-nuage)soma; tudor Tudordomain +* + germinal - [116–118] germgranules tapas Tudordomain+Lotus germline(C-nuage) + + ping-pong?,primary? germinal ++++(RNA) [113,119] Tudordomain+Lotus tejas germline(C-nuage) + + ping-pong?,primary? germinal ++++ [84] domain Tudordomain+ soma(C)+germline(C-nuage) zucchini + + primarypathway germinal+somatic + [65,66,69,71,81] nuclease mitocondrial Tudordomain+ germline(C-nuage); squash +* + germinal+somatic + [69,81] nuclease NDinthesoma Tudordomain+ germinal(seenonlyin vreteno soma(C)+germline(C-nuage) + + primarypathway ND [113,114] RRMdomai ovaries)+somatic Int.J.Mol.Sci.2017,18,1066 7of20 Table1.Cont. Stellate-Made Mutants ProteinDomains ProteinLocalization Testes Ovaries ProteinFunction Transposons References Crystals Tudordomain+RING soma(N)+germline(Amplifier primarypathway(dualstrand qin/kumo + + germline+somatic + [75,85,120] domain Complex-C-nuage) clusters) Tudordomain,KH, dFmr1 soma+germline(N+C) + + germinal+somatic + [105] RGG,NLS,NES Tudordomain+KH papi soma(N)+germline(C-nuage) ND + primary+ping-pongpathway germinal+somatic ND [121] domain eggless Tudordomain+SET H3K9methyltransferase germline(N)+soma(N) ND + germinal+somatic ND [122] (dSETDB1) domain (TEregulation) NonTudorProteins chromo/shadow primary+ping-pongpathway rhino germline+soma(N) ND + germinal - [57,76,82] domain (dualstrandclusters) primary+ping-pongpathway cutoff DXO/Dom3Zfamily germline(C-nuage)+N ND + germinal - [57,76] (dualstrandclusters) Maelstromdomain germline+soma:shuttle maelstrom (DNA/RNAbinding); + + primary+ping-pongpathway germinal+somatic ND [123] nucleus-cytoplasm(nuage) HMGprotein capsuleen PRMT germline(C-nuage) + + argininemethyltransferase germline + [124,125] FKBP6family soma(YB-bodies)+ shutdown + + primarypathway+ping-pong germinal+somatic + [115,127] (co-chaperone) germline(N+C) hsp83 heatshockprotein soma+germline(N+C) + + primarypathway+ping-pong germinal+somatic + [70,78,99,101] Int. J. Mol. Sci. 2017, 18, 1066 8 of 20 Int.J.Mol.Sci.2017,18,1066 8of20 3. dFmr1 Participates in the piRNA Pathway Occurring in Gonads 3. dFmr1ParticipatesinthepiRNAPathwayOccurringinGonads Recently our group has demonstrated that dFmr1 plays a role in the piRNA pathway in testes and ovaries of Drosophila melanogaster [105]. This study originates from the observation that dFmr1, a RecentlyourgrouphasdemonstratedthatdFmr1playsaroleinthepiRNApathwayintestes panrodteoivna irnivesolovfeDd rions oRpNhiAla mmeeltaanbooglaissmter, [w10a5s ]f.oTuhnids stotu bdey aosrsiogciinaateteds ifnr oam cotmhepolebxs ewrvitaht icoonmthpaotndenFtms ro1f, the RNA interference pathway [7,8]. In addition, the complexity of the symptoms exhibited by aproteininvolvedinRNAmetabolism,wasfoundtobeassociatedinacomplexwithcomponentsof fragile-X patients and by Drosophila mutants in the gonads and in the nervous system, along with the theRNAinterferencepathway[7,8].Inaddition,thecomplexityofthesymptomsexhibitedbyfragile-X dpiastcieonvtesryan odf bpyiRDNrAosso pinhi tlahem nuetravnotsuisn styhsetegmo noafd Dsraonsodpihniltah aennde hrvuomuasnssy s[t3e3m,3,4a,1lo3n0–g1w33it]h, atlhloewdiesdc ouvse troy hoyfppoiRthNeAsiszein tthhaet nmeruvcohu smsoyrset ermemoafiDnrso stoop bhiel adainscdohvuermedan asb[o33u,t3 4th,1e3 0m–u13lt3i]p,lael lfouwnecdtiounsst oofh ythpeo tFhMesRizPe protein. thatmuchmoreremainstobediscoveredaboutthemultiplefunctionsoftheFMRPprotein. 33..11.. ddFFmmrr11’’ss RRoollee iinn tthhee TTeesstteess TThhee rroollee ooff ddFFmmrr11 iinn tthhee ppiiRRNNAA ppaatthhwwaayy wwaass ddeemmoonnssttrraatteedd aatt ffiirrsstt,, bbyy tthhee pprreesseennccee ooff tthhee SStteellllaattee--mmaaddee ccrryyssttaalllliinnee aaggggrreeggaatteess iinn ssppeerrmmaattooccyytteess ooff ddFFmmrr11∆∆5500,, ddFFmmrr11∆∆11113 3mmuutatannt tmmaalleess aanndd iinn RRNNAAii--ddFFmmrr11 mmaalleess iinn wwhhiicchh tthhee ffuunnccttiioonn ooff tthhee pprrootteeiinn wwaass sseelleeccttiivveellyy rreedduucceedd iinn ddiiffffeerreenntt cceellllss ooff tthhee ggoonnaaddss ((ggeerrmmiinnaal loorr ssoommaatitci)c )(F(Figiguurer e3,3 r,erde dbobxoexse)s. )T.hTeh perepsreensecne coef ocrfycsrtyaslsta wlsaws aacscaocmcopmanpieadn ibeyd tbhye tdhreasdtrica srteicdurecdtiuocnt ioofn tohfe tShteelSlatteel-lraetela-rteelda tpeidRNpiARsN. ATsh.e Tchonefciromnfiatrimona toiof nthoef rtohlee roofl edoFfmdrF1 minr 1thine pthiReNpAiR NpaAthpwaatyh wina tyesinteste, sctaems,ec farmome ftrhoem obthseervoabtsieornv tahtiaotn int hdaFtmirn1 dmFmutra1nmts uatnadn tdsFamnrd1-RdFNmAr1i -mRaNleAs,i smevaleersa,ls etrvaenrsaplotrsaanbslpe oeslaebmleeneltesm aerne tsacatrievaatcetdiv awteitdhw eiftfhecetfsf eoctns othnet hfeerfteilrittiyli toyf otfhteh eininddivivididuuaalsl s[[110055]]. . ddFFmmrr11 iiss eexxpprreesssseedd iinn tthhee ggeerrmm cceelllsl soof faadduultl ttetsetsetse sasa scocnocnlculduedde dfrofrmom itsi tcsocloolcoacliazlaiztiaotnio wniwthi tVhaVsaa,s aa, gaegrmerlminlein-sep-sepciefcicifi mcamrkaerrk [e8r6,[18364,1],3 a4s], parsevpiroeuvsiloyu dsleyscdriebsecdri b[1e0d5][.1 I0t5 i]s. alIstoi spraelssoenpt riens tehnet piniNtGhe bpoidNieGs (bFoidguierse( F4iAgu–Cre),4 Are–pCr)e,sreenptriensge nstpinecgifsipce gciifianctg ibaondtibeosd oief stohfet hneunaguea,g ew,hwehree resosmome eppiRiRNNAA ccoommppoonneennttss ppeerrffoorrmm tthheeirirf ufuncntcitoinon[1 3[153].5d]. FdmFrm1lro1c aloliczaaltiizoantiiosnp riesd opmreidnoamntilnyacnyttloyp claystmopicla,semveinc, theovueng htahonuugchle aar nlouccalleiazra tlioocnalaiznadtifounn catniodn fuhnacvteiobne ehnavreep boeretned re[1p3o6r,t1e3d7 []1.36,137]. FFiigguurree 33.. GGeermrmlilninee anandd sosmomataicti crerqeuqiureirmemenetn otfo dfFdMFMR1R i1n itnhet hteestteesst. eAs. scAhesmchee mof ethoef athpeicaalp picaarlt poaf rat toefstais teisst isreipsorretpedo.r teRde.d Raerdrowarsr owansda nbdoxbeos xeinsdiincdaitcea tteheth eefefeffcet ctofo fththee kknnoocckkddoowwnn aanndd//oorr tthhee oovveerreexxpprreessssiioonn ooff ddFFmmrr11 iinn tthhee hhuubb aanndd iinn tthhee ggeerrmmlliinnee oobbttaaiinneedd uussiinngg uuppddGGaall44 ((hhuubb)) aanndd nnaannoossGGaall44 ((ggeerrmmlliinnee)) ddrriivveerrss.. TThhee ggrreeeenn aarrrrooww aanndd bbooxx iinnddiiccaatteess tthhee eeffffeeccttss ooff tthhee oovveerreexxpprreessssiioonn ooff aauubbeerrggiinnee. . GGSSCC ssttaannddss ffoorr ggeerrmm sstteemm cceellllss;; GGBB ssttaannddss ffoorr ggoonniiaallbbllaassttss.. Int.J.Mol.Sci.2017,18,1066 9of20 Int. J. Mol. Sci. 2017, 18, 1066 9 of 20 Figure4. dFmr1andVasaimmunolocalizationinwtadulttestes. Maxintensityoftripleconfocal Figure 4. dFmr1 and Vasa immunolocalization in wt adult testes. Max intensity of triple confocal sections(40×)ofawildtypetestislabeledwith(A)anti-dFMR1,(B)anti-Vasa,(C)Mergewiththe sections (40×) of a wild type testis labeled with (A) anti-dFMR1, (B) anti-Vasa, (C) Merge with the DAPIchannel. DAPI channel. ddFFmmrr11 wwaass aallssoo ffoouunndd ttoo iinntteerraacctt ggeenneettiiccaallllyy aanndd bbiioocchheemmiiccaallllyy wwiitthh ttwwoo AArrggoonnaauuttee pprrootteeiinnss:: AAuubbeerrggiinnee ((aaP Piwiwipi rportoetinei)n()F i(gFuigreur3e, g3r,e genrebeonx b)oanx)d aAngdo 1A(gaon1A (gaon pArogtoe ipnr),obteoitnh),o fbowthhi cohf awrehliochca taerde alotctahteedn uaat gtheeo nfuthaegeg eorfm thcee gllesr.mT hceelglse. nTehteic giennteertaicc tiinotnerwacittihonA wubitehr gAinuebearngdinAe gaon1d aAlsgooo1c aclusros oicncuthres nine rtvhoe unsesrvysotuesm syastttehme naet uthroe mneuuscroomlarujsucnoclatiro jnusn[c1ti0o5n].s [105]. TThhee pprreesseennccee ooff tthhee TTuuddoorr//AAggeenneett ddoommaaiinn iinn ddFFmmrr11 ssuuggggeessttss tthhaatt iitt mmaayy bbiinndd tthhee AArrggoonnaauuttee pprrootteeiinnss bbyy tthheeiirr ssyymmmmeettrriiccaallllyy ddii--mmeetthhyyllaatteedd aarrggiinniinneess ((ssDDMMAAss)),, llooccaatteedd aatt tthhee NN--tteerrmmiinnaall ssiittee ttoo aaccttiivvaattee tthheemm [[110099,,112211,,113388]].. HHoowweevveerr,, iinn ssppeecciifificc ccaasseess,, tthhee iinntteerraaccttiioonn bbeettwweeeenn AArrggoonnaauuttee pprrootteeiinnss aanndd ssoommeeT uTduodropr rpotreoitnesiniss inisd einpdenepdeenndtfernotm frtohmes DthMe AsDs,MasAdse,m aos ndstermatoednsftorrattehde ifnotre rtahceti oinntbeeratwcteioenn Abeutbweergenin eAaunbdeKrguinmeo a[1n2d0 ]Kourmfoor A[1g2o03] aonrd fKorri mApgeor3[ 8a9n].dI nKtrhiemcpaesre o[8f9d]F. mInr 1tahned cAasueb eorfg idnFem,itr1se eamnds mAuobreerligkienley, tiht asetethmesi nmteorraec ltiikoenlyo ctchuart sthined ienpteernadcetinotnly ofcrcoumrst hinedseDpMenAdsenretlsyid furoesmo tfhAe usbDeMrgAinse rbeescidauusees iotf hAausbbeeregnindee bmeocanusstrea itte dhatsh bateetnh edbeimocohnesmtraicteadl itnhtaetr athctei obnioocfhtehmeictwalo inptreoratecitniosni sonf othtel itmwiote pdrototetihnes Nis -nteortm liimnaitleddo tmo athine oNf-Ateurmbeirngailn deo[1m0a5i]n. of Aubergine [105]. 33..22.. ddFFmmrr11’’ss RRoollee iinn tthhee OOvvaarryy RReecceennttllyy,, ddFFmmrr11 hhaass eemmeerrggeedd aass aa mmeemmbbeerr ooff ppiiRRNNAA--mmeeddiiaatteedd ppaatthhwwaayyss iinn oovvaarriieess [[110055,,113399]].. TThhee fifrirsstti nidnidciactaiotinono fothf ethinev oinlvveomlveenmteonftd Fomf rd1Fimnrt1h einp iRthNeA ppiRaNthAw apyaothfwthaeyo voafr ythwe aosvthareya cwtiavsa titohne oacfttirvaantsiopno soonf stcraaunssepdosboyntsh ecaloussseodf dbFym trh1e. Tlhosesl eovfe ldoFfmtrar1n.s cTrihpet iolenvoefl spofe ctirfiacntsrcarnipsptioosno nosfi nscpreecaisfeics strigannsifipcoasnotnlsy iinncrtehaesedsF msirg1nimficuatnantlty oivna trhiees daFcmcor1m mpauntaiendt ,oavsaerixeps eacctecodm, bpyanthieed,r eadsu ecxtpioenctoedf,f ebryti ltihtye. Mredoruecotvioenr, oitf ifseirntitleitryes. tMinogretoovneort,e itth isa tinthteereexstpinregs stioo nnoptaet ttherant sthoef edxFpmrer1ssainond pthaettperiRnNs oAf -dreFlmater1d apnrdot tehine ApiuRbNerAg-irneelactoe-dlo pcraolitzeeinin Asupbeecrifigicntee rcroi-tloorcieaslizoef tihne spovecairfyic[ t1e0r5r]i.tories of the ovary [105]. TThhee DDrroossoopphhiillaao ovvaarryyi sisc coommppoosesdedo fo1f 212to to16 1o6v oavraiorlieosl.esIn. Iena cehacohn oe,nteh, ethmeo mstoaspt iacaplicsatrlu scttruurcetuisreth ies gtheerm gaerrimumar,iuwmhe, rweshteerme csetlelmsa rceelllosc aatreed .loTchaetedde.v Telhoep idnegveeglogpcihnagm ebgegr pcahsasmesbtehrr opuagshsetsh ethgreorumgahr iuthme agnerdmparroicuemed santhdr opurgohceietsdds etvheroloupgmhe intst, dfoervmelionpgmaelinnte, afrocrhmaiinng. daF lminre1aarn cdhAaiunb. edrFgminre1c oa-nlodc Aaliuzbeeirngtihnee gcoe-rlmocaarliiuzme ,inw htheree gtheremyaarcicuumm,u wlahteeraet tthheeyp oascitciuomnuoflatthee astt etmhec eplloss.iTtihoen towfo tphero steteinms acleslolsc. oT-lhoec atlwizoe ipnrothteeinnsu aaglseoo cfoth-leocnaulrizsee cinel ltshaen ndu,aingeth oef lathteer nstuargsees c,ethllesy aonvde,r ilnap thine tlhaetecry stotapgleass,m thoefyt hoevoeorlcaypte in[1 0th5e]. Tcyhteorpellaastmion osfh itpheb eotwoceyetne d[1F0m5r]1. Tanhde trheelaptiioRnNsAhipp abthewtwaeyeins adlFsomcro1n afinrmd etdheb ypitRheNiAnt epraatchtiwonayb eitsw aelesno dcoFnmfirr1maendd bPyi wthie, winhtiecrhacatciotnto bgeettwheerenin dtFhmehr1e taenrodc hPriwomi, awtihcigchen aects itloengectinhgeri nins othme ahtiectecreollcsharonmdathtiec tgreannes psoilseonncisnilge ninci nsogminatgiecr cmelclse lalsnd[1 4th0e]. tIrnanpsaprtoicsuolna rs,iiltenhcaisnbge einn gdeermmo ncesltlrsa t[e1d40t]h.a Itnd pFamrtri1cuislaers,s eitn htiaasl fboeretnh deecmororencsttrloatceadli zthataito dnFomfHr1P i1s, eisnstehnetihael tfeorro tchher ocmorarteicnt olofcfaollilzicalteiocnel olsf [H13P91],. iInt itshke nhoewtenrotchhartoHmPa1tiins aofh ifgohllliyclceo cneslelsrv [e1d39p]r.o Itte iins ikdnenotwifine dthaast aHcPru1c iiasl aco hmigpholnye nctonofsethrveehde tperrooctehirno midaetnintifwieidth aasr oal ecrinuctihael PcoomsitpioonneEnftf eocft Vthaer iehgeatetiroonch(ProEmVa),tinno wwiathls oa rreocloeg niniz tehde aPsopsliatyioinng Erfofelecst iVnamriaengyatoiothne (rPpErVoc),e snsoews[ 1a4ls1o]. recogInnitzheedo avsa pryla,ydiFnmg rr1oliessa ilnso minavnoyl voethdeirn ptrhoecmesiscerso R[1N41A].- mediatedpathway. Thetightlinkbetween dFMIRn1 tahned othvaermy,i RdNFmArp1 aitsh walasyo hinasvoelmveedrg eind tfhroem mtihceroiRntNerAa-cmtioedniabteetdw epeanthtwheayF.r aTghilee -tXigphrto tlienink abnetdwteheen bdaFnMtamR1m ainRdN tAhe tmoicRoNntAro plagtehrwmaliyn heasst eemmecregllesdi nfrothme tohvea irnyteorfaDctiroosno pbheitlwae[1en42 t]h.eI nFrhaugimlea-Xn cperloltleiinne sa,nFdM tRheP binantetraamc tmswiRiNthAc otmo pcoonnternotls goefrtmhelinmei RstNemA pcealtlhs wina yt,hseu ochvaarsy Doifc eDrr1oasonpdhiAlag [o1142[1].4 3In]. human cell lines, FMRP interacts with components of the miRNA pathway, such as Dicer1 and Ago1 Int.J.Mol.Sci.2017,18,1066 10of20 InDrosophila,Ago1isalsorequiredforthebiologicalfunctionofdFmr1inneuraldevelopmentand synaptogenesis[9]. 4. GeneticandBiochemicalInteractorsofdFmr1 In the last part of this review we will examine the multiple roles and functions of the dFmr1 protein,followingthethreadsofitsgeneticandbiochemical/physicalinteractorsinthegonadsand in the germ granules representing a bridge from oocyte to embryos in the fly and other animals (miceandhumans). dFmr1hasrecentlybeenassociatedwiththepiRNApathwayinthegonadsofbothsexes[105,139] andtheinteractionwithsomeoftheArgonauteproteinssupportsthesefindings. dFmr1interacts with Aubergine, allowing the correct silencing of the transposons and repetitive sequences [105], andwithPiwi[139],cooperatinginthepiRNA-mediatedtranslationalsilencingofthetransposons. ThesetwoproteinsbelongtothePiwi-subfamilyoftheArgonauteproteins,andwhereasAubergine is cytoplasmic as well as the most common localization of dFmr1, Piwi is predominantly nuclear, confirminganuclearfunctionandlocalizationofdFmr1. Ago1,belongingtotheAgo-subfamilyofthe Argonauteproteins,isabiochemicalandgeneticinteractorofdFmr1inthepiRNApathway[105],as wellasinthemiRNApathwayintheovary[9,142–147]. TheDEADboxRNAhelicaseVasaisalsoconsideredakeycomponentofthepiRNApathway; it is located at the nuage of ovaries and testes [35,51,83,134,148–152] and has been considered a“biochemicalplatform”toputtogetherthekeycomponentsofthepiRNAamplificationmachinery (theAmplifiercomplex)innuage[86]. dFmr1hasbeendemonstratedtoco-localizewithVasainthe testesandovaries[105].ThefunctionofthedFmr1geneisalsorequiredforpolecellsformation,located attheposteriorpoleoftheearlyembryo,inwhichtheVasaproteinisoneofthemaincomponents ofthepolargranules[134,153,154]. ThesefindingssupportthehypothesisthatdFmr1andVasamay exerttheirroleinthesamepathwayfromthegermcellsintheovarytothepolecellsintheembryoin thesilencingofthetransposableelementsmaintaininggenomestabilityinthesetissues. Anothercomponentofthegermgranulesatthepoleplasm,wherethepolecellswillform,isthe RNAbindingproteinCup[155–157]. ThegenecodingforCuphasbeenfoundinageneticscreening forinteractorsofdFmr1[158]. ItcodesforanRNAbindingproteinpromotingtheaccumulationof thegermplasmcomponentslikeOskar,VasaandStaufenattheposteriorpoleoftheoocyteanditis requiredforthecorrectpolargranulesdeposition[157,159].Duringthedevelopmentoftheearlystages ofoogenesis,Cupco-localizesandinteractswithHsp83[157]. Hsp83hasawell-demonstratedrolein thesilencingoftransposonsandrepetitivesequencesrelatedtothegenomestability[95,101,160–162]. TheP-bodiescomponent,Me31BDEADboxhelicase,representsaveryintriguinglinkbetween Cup, Hsp83 and dFmr1 [163]. Me31B co-localizes with dFmr1 and Cup in these cytoplasmic structuresimplicatedinRNAmetabolismlikestorage,translationalrepression,andRNAdegradation. Me31B also interacts with Aubergine and Vasa, and is required to recruit dFmr1 to the neuronal granules[164–167],whichmaybeconsideredaneuronalcounterpartofthepolargranules. AnemergingfunctionwhichhasbeendemonstratedforthemammalianformofFmr1protein is related to its capacity to recognize the G-quadruplets, a specific structure in RNAs [168]. It is interesting to note that the G-quadruplets have been shown to be present in the precursors of the piRNAs[47]. TheconnectionbetweentheDrosophiladFmr1andtheG-quadrupletscanbesupported bythefindingthatoneofthetargetsofdFmr1inthenervoussystemistheproteinFutsch,thehomolog ofthemammalianMAP1B,exhibitingaputativeG-quadrupletsinits5(cid:48) end[19,144,153]. Thisspecific aspecthasnotyetbeencompletelyelucidatedinDrosophila. NuclearInteractorsintheSmallRNAPathway(intheGonads) In additionto thecytoplasmic functionof dFmr1, anuclear functionhas been suggested due not only to the NLS and NES domains in the protein (Figure 1) [1,24,169], but also to some of its nuclear interactors. One of the known nuclear interactors in mammals is NUFIP (Nuclear Fmr1

Description:
Valeria Specchia, Simona D'Attis, Antonietta Puricella and Maria Pia Webster, A.; Li, S.; Hur, J.K.; Wachsmuth, M.; Bois, J.S.; Perkins, E.M.; Patel,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.