ebook img

Development of Very Low-Profile Ultra-Wideband VHF Antennas PDF

120 Pages·2011·2.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of Very Low-Profile Ultra-Wideband VHF Antennas

Development of Very Low-Profile Ultra-Wideband VHF Antennas A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Haksu Moon, B.S. Graduate Program in Electrical and Computer Engineering The Ohio State University 2011 Master’s Examination Committee: Prof. John L. Volakis, Advisor Dr. Chi-Chih Chen, Co-advisor c Copyright by (cid:13) Haksu Moon 2011 Abstract Withtherapidgrowthofwirelesscommunicationsandassociateddemandforhigh data-rates, many future antennas must be ultra-wideband (UWB). A single antenna is certainly a most attractive solution to handling the large bandwidth requirements. Designingsuchanantennathatisconcurrentlyoflow-profileisnecessaryformounting on a variety of grounds and airborne vehicles. This thesis presents a new low-profile UWB antenna concept. The concept is based on a shorted low-profile patch strategi- cally fed on the open side to obtain wide bandwidth. For miniaturizing the proposed antenna and widening its bandwidth, it was loaded with ferrite bars placed between the patch plate and the ground plane. Much of the design effort for this antenna is fo- cused on the location and shape of the ferrite bars. Minimization of antenna weight is also performed. The developed ferrite-loaded shorted-patch concept is compared with a low-profile monopole to demonstrate its superior bandwidth and gain performance over the frequency range from 30 MHz to 400 MHz. Prototype versions of various ferrite-loaded shorted-patch antennas were fabricated and measured for validation. A version of these was the design that has a planar patch as small as λ/16 in diameter and a height of only λ/200 at the lowest operational frequency. We note that the ferrite loading design led to 5 to 14 dB gain improvement in the low frequency range below 50 MHz. The resulting gain was actually close to the optimal Fano-Bode limit. An important aspect of the ferrite loading design was the ii useofcommerciallyavailablematerials. Althoughthesewerelossyathighfrequencies, their strategic placement resulted in minimal gain reduction. iii This thesis is dedicated to my family and friends iv Acknowledgments First and foremost, I am heartily thankful to my advisor, Prof. John L. Volakis, whose encouragement, guidance, and support enabled me to complete a Master’s degree as well as this thesis. Without his endless enthusiasm, the completion of the degree would not be possible. Also, I would like to thank my co-advisor, Dr. Chi-Chih Chen, for his continuous mentoring and patience. His unfailing support has enriched my knowledge and ex- perience in electromagnetics area, which enabled me to complete the research topic presented here. I am also indebted to many of my ESL colleagues to help, advise, and support me, who are Jing Zhao, Gil Young Lee, Ugur Olgun, Chia-Wei Liu, Ming Chen, Jaeyoung Chung, Keum Su Song, James Park, Chun-Sik Chae, and William Moulder. Also, I would like to express my appreciation to Kyungyoung Jung, Young-Seo Ko, and Daeyoung Choi for their support and encouragement. Last but not least, I offer my sincerest regards and blessings to my parents and brother who always trust and support me at any time in my life. v Vita January 9, 1982 ............................ Born - Yeosu, Korea February 22, 2008 ..........................B.S. in Electrical and Computer Eng., Hanyang University, Seoul, Korea October, 2008-present ...................... Graduate Research Associate, ElectroScience Laboratory, The Ohio State University, USA Publications Conference Publications Haksu Moon, Chi-Chih Chen, and John L. Volakis, “Quad Split Ultrawideband Inverted-Hat-Antenna with Pattern and Polarization Diversity”, IEEE APS/URSI- B, Session 409, Charleston, SC., 2009. Haksu Moon, Chi-Chih Chen, and John L. Volakis, “Ultra Low Profile Wideband Antenna with Ferrite Loading”, IEEE APS, Session 309, Toronto, Canada, 2010. Fields of study Major Field: Electrical and Computer Engineering vi Studies in: Theoretical Electromagnetics Prof. Jin-Fa Lee Prof. Prabhakar Pathak Prof. Roberto Rojas-Teran Computational Electromagnetics Prof. Jin-Fa Lee Prof. Fernando Teixeira Antennas and Propagation Prof. John L. Volakis Prof. Joel T. Johnson Microwave Circuits Prof. Patrick Roblin Communications Prof. Phil Schniter Mathematics Prof. Fei-Ran Tian vii Table of Contents Page Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Chapters: 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Review of Small Antenna Limitations . . . . . . . . . . . . . . . . . . . . 5 2.1 Size Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Bandwidth Limitation . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 TM and TE Mode Operation . . . . . . . . . . . . . . . . . . . . . 8 3. Monopole Antenna Design Study . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Basic Antenna Properties . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Modification of Antenna Geometry . . . . . . . . . . . . . . . . . . 14 3.2.1 Various Top Geometries . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Inductive Loading Using Spiraled Arms . . . . . . . . . . . 16 viii 3.3 Effect of Cavity under Ground Plane . . . . . . . . . . . . . . . . . 20 3.4 Miniaturization via Material Loading . . . . . . . . . . . . . . . . . 23 3.4.1 First Resonant Frequency . . . . . . . . . . . . . . . . . . . 23 3.4.2 Material with Constant Wavenumber and Different Wave Impedances . . . . . . . . . . . . . . . . . . 26 3.4.3 Material with Constant Wave Impedance and Different Wavenumbers . . . . . . . . . . . . . . . . . . . . 27 3.4.4 Ferrite Loading . . . . . . . . . . . . . . . . . . . . . . . . . 29 4. Low-Profile UWB VHF Antenna Based on Grounded Loop Antenna . . . 31 4.1 Wideband Grounded Loop Antenna . . . . . . . . . . . . . . . . . 31 4.2 Parametric Studies with Antenna Dimension . . . . . . . . . . . . . 35 4.2.1 Width Study . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Length Study . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Height Study . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.4 Feeding Plate Study . . . . . . . . . . . . . . . . . . . . . . 40 4.2.5 Top Geometry Study . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Miniaturization via Uniform Ferrite Loading . . . . . . . . . . . . . 43 4.3.1 Benefit of Ferrite Loading . . . . . . . . . . . . . . . . . . . 43 4.3.2 Comparison of Various Commercial Ferrites . . . . . . . . . 45 4.4 Gain Improvement Using Non-Uniform Ferrite Loading . . . . . . . 47 4.4.1 Width Optimization . . . . . . . . . . . . . . . . . . . . . . 47 4.4.2 Height Optimization . . . . . . . . . . . . . . . . . . . . . . 52 4.4.3 Placement Optimization . . . . . . . . . . . . . . . . . . . . 55 4.4.4 Top Geometry Optimization . . . . . . . . . . . . . . . . . . 56 4.4.5 Optimized Antenna Performance . . . . . . . . . . . . . . . 58 4.5 Ferrite Volume Reduction . . . . . . . . . . . . . . . . . . . . . . . 63 4.5.1 Ferrite Volume Reduction Approach . . . . . . . . . . . . . 63 4.5.2 Parametric Studies . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 Further Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5. Fabrication and Measurements . . . . . . . . . . . . . . . . . . . . . . . 73 5.1 Fabrication Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Measurement Setups . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.1 Outdoor Measurement Setup . . . . . . . . . . . . . . . . . 77 5.2.2 Indoor Measurement Setup . . . . . . . . . . . . . . . . . . 82 5.3 Measurement Results and Discussions . . . . . . . . . . . . . . . . 84 ix

Description:
VHF Antennas. A Thesis. Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the. Graduate School of The Ohio State University version of these was the design that has a planar patch as small as λ/16 in diameter . 4.3 Miniaturization via Uniform Ferrite Loading
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.