Imperial College of Science, Technology and Medicine Royal School of Mines Department of Earth Science and Engineering Development of the Energy, Water and Food Nexus Systems Model By Tareq Al-Ansari A thesis submitted for the degree of Doctor of Philosophy of Imperial College London April 2016 Abstract The sustainability of natural resources is vital in the light of a rapid population growth and the associated ever increasing demand for services and products. Critical to this growth is the question of energy, water and food (EWF) security. The systems representing the three resources are intrinsically interdependent in what is known as the EWF Nexus. As such, there is a need to develop assessment tools that adequately quantify the inter-dependencies between EWF systems and the surrounding environment in order to identify and evaluate the trade-offs and synergies between them. Existing assessment methodologies do not explicitly identify and quantify the inter-linkages between EWF resources throughout product systems. As a result, decision making regarding the allocation of resources towards the development of a product or service, and the subsequent impact on resource sustainability and environmental degradation, is obscured. Furthermore, earlier approaches translate product system inputs into outputs through the use of generic databases. As such, analysis of product systems operating within varying spatial and temporal scales is hindered. The EWF Nexus tool is a culmination of well-established theories related to system engineering such as Industrial Ecology and LCA. With emphasis on the inter-linkages between EWF resources, the EWF Nexus tool quantifies material flow and energy consumption at component unit process level. The tool is distinguished from previous assessment tools in that it aggregates product systems in terms of the constituting processes identified as sub-systems. Representing complex systems in this manner offers advantages to conventional gate to gate representation. For instance, consideration of process variability and dependencies alleviates flexibility limitations associated with generic databases. Furthermore, with the inter-linkages between EWF resources adequately represented in sub-system design, the respective consumption of resources can be accurately accounted for in product systems. i Considering the flexibility and modularity embedded within the EWF Nexus tool, the identification of environmental pressures can be computed for product systems operating within varying spatial settings utilising different technology options and in multiple configurations. The objective of this thesis is to present the details and function of the EWF Nexus environmental assessment tool, and illustrate its implementation through a specific food security scenario in Qatar. The EWF Nexus tool aggregates a proposed food system into its agriculture, water and energy components represented by sub-systems and is used to evaluate the different pathways for which a hypothetical 40 % food self-sufficiency target in Qatar can be achieved. As part of the LCA, sub-system LCI models representing the EWF systems have been developed. The food nexus element includes sub-system LCI models for the production of fertilizers and agricultural activities such as the application of fertilizers and the raising of livestock. The water nexus element includes sub-system LCI models for two desalination processes; Multi-Stage Flash (MSF) and Reverse Osmosis (RO) for the production of fresh water. The energy nexus element includes sub-system LCI models for power generation from two sources; a combined cycle gas turbine plant (CCGT) and renewable energy from solar Photovoltaics (PV). Furthermore, a sub-system for a biomass integrated gasification combined cycle (BIGCC) is integrated to recycle solid waste into useful forms of energy to be re-used within the EWF Nexus. Finally, a sub-system representing carbon capture (CC) technology is integrated to capture and recycle CO from both the CCGT and the BIGCC. The 2 integration of CC with the BIGCC transforms the carbon neutral BIGCC process to a negative GHG emission technology with carbon capture and storage (BECCS). For the different scenarios and sub-system configurations considered, the results indicate that the largest global warming potential (GWP) originates from the non-energy related emissions within the food sub-systems. Within this category, emissions from the enteric fermentation processes present in livestock species represent the overwhelming majority of the GWP. Emissions from the power generation are reduced as power from PV technology is integrated as a substitute for the CCGT. The GWP is further reduced by 45 % as the BIGCC is integrated to supplement PV’s. The complete roll out of PV and the BECCS (BIGCC +CC) to power the water and food sub-systems can almost completely balance the GWP from the non-energy related emissions by reducing the total GWP by 98 %, attributed to a theoretical achievable maximum negative emission of 1.15 109 kg CO /year. In the same scenario, the 2 PV land footprint required calculated is a maximum of 660 ha accompanied by a 127 % × decrease in natural gas consumption (27 % credit). ii DEDICATED TO MY PARENTS, FAMILY and FRIENDS iii Affirmation The work submitted in this thesis is my own, and has not been submitted previously for any other degree. The following publications and presentations have resulted from this work: Al-Ansari, T., Korre, A., Nie, Z., Shah, N., 2016, Integration of Biomass Gasification and CO Capture in the LCA model for the Energy, Water and Food Nexus, proceedings of the 2 26th European Symposium on Computer Aided Process Engineering: Escape 26, June 12 – 14, Slovenia. Al-Ansari, T., Korre, A., Nie, Z. and Shah, N. 2015. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustainable Production and Consumption. Al-Ansari, T., Nie, Z., Korre, A., Shah, N., Assessment of Greenhouse Gas Control Technology Options within the Energy, Water and Food Nexus, 2nd International Symposium on Energy and Mechanics, Aberdeen, Scotland,19 – 21st August 2014. Al-Ansari, T., Korre, A., Nie, Z., Shah, N., Integrated Modelling of the Energy, Water and Food Nexus to Enhance the Environmental Performance of Food Production Systems, 9th International Conference LCA of Food, San Francisco, USA, 8 – 10 October 2014 Al-Ansari, T., Korre, A., Nie, Z., Shah, N., 2014, Development of a Life Cycle Methodology for the Energy, Water and Food Nexus, proceedings of the 24th European Symposium on Computer Aided Process Engineering: Escape 24, June 15 – 18, Hungary. Al-Ansari, T., Korre, A., Shah, N.,2013, Development of a Life Cycle Methodology for the Energy, Water and Food Nexus, poster presentation, First Global Food Security Conference. Al-Ansari, T., Korre, A., Shah, N., 2013, Development of a Life Cycle Methodology for the Energy, Water and Food Nexus, poster presentation, Qatar Foundation Third Annual Research Forum. Al-Ansari, T., Korre, A., Shah, N., 2012, Sustainability Assessment of the Energy, Water and Food Nexus, poster presentation, Qatar Foundation Third Annual Research Forum. iv Acknowledgements I would like to thank: God for giving me the strength, discipline and perseverance to complete this PhD, especially in times of hardship; Professor Anna Korre and Professor Nilay Shah for their supervision, support and guidance throughout the PhD program beginning in 2011; my friends and colleagues within the “Minerals, Energy and Environmental Engineering Research Group” at Imperial College and I wish them the best in their future endeavours; my sponsor; the Qatar foundation including members of the Qatar Research and Leadership Program (QRLP) and especially Dr Ayman Bassil for their support since joining QRLP in 2010; and finally, a special thank you to my father, Ali, my mother, Sahar and my two brothers, Omar and Hussam for their unconditional support. v Table of Contents Table of Contents ABSTRACT I AFFIRMATION ................................................................................................................................. IV ACKNOWLEDGEMENTS .................................................................................................................V TABLE OF CONTENTS ................................................................................................................... VI LIST OF FIGURES ............................................................................................................................ XI LIST OF TABLES ............................................................................................................................. XV CHAPTER 1 INTRODUCTION AND OBJECTIVES ................................................................ 1 1.1 1.2 INTRODUCTION ............................................................................................................................... 1 1.3 RESEARCH OBJECTIVES ................................................................................................................. 3 CHAPTERT 2H ESIGS LSTORBUACTLU RREE .S..O...U....R...C...E..S...:. .T...R....E..N....D...S.. ..A...N...D... .R....I.S...K...S... ...................................................................................................... 75 2.1 2.1.1 WAWTEaRte RrE CSoOnUsRuCmESp ..t.i..o..n... .P...a..t..t.e...r..n.................................................................................................................................................................................................. 79 2.1.2 Addressing Future Water Challenges ...............................................................................10 2.2 2.2.1 THFEe PeRdOinVgIS IaO GN rOoFw FiOnOgD P .o...p..u...l.a..t..i.o...n.. ................................................................................................................................................................................... 1111 2.2.2 Food Production Challenges .................................................................................................12 2.3 2.3.1 ENTERhGeY E RnEeSrOgUyR OCuEtSl .o..o...k.. .............................................................................................................................................................................................................................. 1134 2.3.2 Costs of Climate change ..........................................................................................................16 CHAPTER 3 THE EARTH SYSTEM ........................................................................................ 18 vi Table of Contents 3.1 3.2 THE INDUSTRIAL SYSTEM ........................................................................................................... 19 3.2.1 THAE gFrOiOcuDl StYuSrTeE aMn .d.. .t..h...e.. .E...n..v..i..r..o..n...m....e..n..t.. ....................................................................................................................................................................... 2213 3.2.2 Sustainable Intensification of Food Production ..........................................................25 3.3 3.3.1 NITNRiOtrGoEgNe CnY CCyLcEl .e.. .I..n..p...u..t..s.. ....................................................................................................................................................................................................................... 2372 3.3.2 Nitrogen Cycle Outputs ...........................................................................................................33 3.4 3.5 CARBON CYCLE ............................................................................................................................. 35 CHAPTERS 4Y STETMH PEE RESWPEFC TNIEVEX OUNS E..N...V..I.R..O...N..M...E..N..T...A..L.. .D..E..G...R..A..D...A..T..I.O..N... ....................................................................................... 4 306 4.1 4.2 ENERGY AND WATER NEXUS ..................................................................................................... 42 4.3 EXPANDING NEXUS BOUNDARIES ............................................................................................. 43 CHAPTERD 5E FINMINEGT THHOE DEWOLFO NGEYXU ..S.. .I.N.. .T..H...I.S. .R...E..S..E..A..R..C..H..................................................................................................................................... 5 418 5.1 5.2 PRODUCT SYSTEMS ...................................................................................................................... 52 5.3 SYSTEMS ENGINEERING .............................................................................................................. 53 5.4 SYSTEM TRANSFORMATION ....................................................................................................... 55 5.5 INDUSTRIAL ECOLOGY ................................................................................................................. 57 5.6 LIFE CYCLE ASSESSMENT............................................................................................................ 61 5.7 INTEGRATION OF NITROGEN IN LCA ........................................................................................ 66 5.8 AGRO-SYSTEM NITROGEN BUDGET........................................................................................... 68 5.9 THE EWF NEXUS TOOL .............................................................................................................. 71 5.9.1 QATTAraRd FeO SOuDp SpYlyST DEiMsr .u...p...t.i..o..n...s. ........................................................................................................................................................................................................ 7756 5.9.2 Vulnerable Domestic Infrastructure .................................................................................77 5.9.3 Increasing Domestic Production.........................................................................................78 5.9.4 Application of the EWF Nexus tool ....................................................................................80 5.10 CHAPTERW 6 ATEWR AFOTOETR P RSIUNBTI-NSGY .S...T...E...M.... .L..C...I.. .M....O...D....E...L.. .D....E..V....E..L...O...P...M....E...N...T.... .................................................................. 8853 6.1 6.1.1 THMERSMFA PLr DocEeSAssL .T..I..N...G.. .P...R...O..C...E..S..S..:. .M....U...L..T...I.-..S..T...A...G..E.. .F...L..A...S..H... .................................................................................................................. 8888 6.1.2 MSF LCI development ...............................................................................................................90 6.2 6.2.1 MERCeHvAeNrIsCeA OL sDmEoSAsiLsI NLACTI IMONo dPeRlO DCeEvSeSEloSp: RmEeVnEtR ..S..E... .O...S..M....O..S..I..S.. ......................................................................................... 9957 vii Table of Contents 6.3 6.4 THE ARABIAN GULF .................................................................................................................. 102 6.4.1 DEISnAtLeINgrAaTtIiOoNn I oMfP BArCiTn eO NE fAflRuAeBnIcAeN i Gn ULLCFA C ..O...A..S..T... ............................................................................................................................ 1 10044 6.5 6.6 WIDER IMPACT ON ARABIAN GULF ....................................................................................... 107 CHAPTERS 7A LINEITNYE SRIMGUYL SAUTIBON-S MYSOTDEELMS . .L...C..I.. .M....O....D...E...L.. .D....E...V...E..L...O....P..M.....E..N....T... ........................................................... 112103 7.1 7.2 FUEL FIRED BOILER ................................................................................................................... 121 7.2.1 COR-GeE-NhEeRaAt TrIeOgNe nPeOrWatEiRo nP LrAaNnTk iLnCeI C MycOlDeE ..L.. .D...E...V..E..L...O..P...M...E...N..T...:. ................................................................................... 1 12255 7.2.2 Configuration 2: CPDP Integration with MSF ........................................................... 131 7.2.3 Configuration 3: CPDP Integration with RO .............................................................. 135 7.2.4 Summary of CPDP ................................................................................................................... 136 7.3 7.3.1 COSMuBmINmEDa rCyY oCLf Em GaAiSn T CUCRGBTIN LEC (IC mCoGdTe)l . ............................................................................................................................................................. 1 13476 7.4 7.4.1 CCCGoTn AfiNgDu rDaEtSiAoLnI N4A: STiImONp IleN TGETG RwAiTthIO RNO ... ....................................................................................................................................................... 1 14467 7.4.2 Configuration 5: CCGT with RO ........................................................................................ 149 7.4.3 Configuration 6: CCGT driving RO and MSF ............................................................... 150 7.4.4 Configuration 7: Combined gas/steam power cycle driving RO and MSF .... 152 7.4.5 Summary ..................................................................................................................................... 154 7.5 7.6 EMISSIONS FROM FOSSIL FUEL POWER GENERATION ........................................................ 155 7.7 CCGT WATER REQUIREMENT ................................................................................................. 156 7.7.1 RENSoElWaAr BPLVE sEyNstEeRmGY O SpUtBio-SnYsS .T...E..M... .L...C...I.. M.....O..D...E...L..L..I.N...G... .................................................................................................................... 1 15567 7.7.2 PV module manufacturing process ................................................................................. 159 7.7.3 Comparative Assessment of LCA for PV system ........................................................ 160 7.8 7.8.1 SOLSAoRla PrV E LnCgiIn MeOeDriEnLg D cEoVnEcLeOpPtMs uENtiTli s..e...d.. .i.n... .t..h..e... .P..V... .L...C..I.. .m....o..d...e..l. ....................................................................... 1 16612 7.8.2 PV module Design ................................................................................................................... 166 7.8.3 PV module Life cycle .............................................................................................................. 167 7.8.4 Summary of main results .................................................................................................... 169 CHAPTER 8 FOOD SUB-SYSTEM LCI MODEL DEVELOPMENT .................................173 8.1 8.1.1 FERATmILmIZoEnRi Pa RPOrDoUdCuTcItOioNn .. .L...C...I. .M....o..d...e..l. ....................................................................................................................................................................... 1 17746 8.1.2 Urea LCI Model ......................................................................................................................... 176 viii Table of Contents 8.2 8.3 FERTILIZER APPLICATION ....................................................................................................... 178 8.3.1 LIVEEsStTiOmCaKt iMoAnN oAfG GEHMGEN ETm LiCssI iMonOsD .E..L.. ........................................................................................................................................................................ 1 17890 8.3.2 Estimation of Non-GHG Emissions .................................................................................. 183 8.4 8.4.1 NITNRiOtrGoEgNe BnU BDuGdEgTe .t.. .I..n..p...u..t..s.. ........................................................................................................................................................................................................ 1 18847 8.4.2 Nitrogen Budget Outputs .................................................................................................... 189 CHAPTER 9 WASTE MANAGEMENT LCI MODEL DEVELOPMENT ..........................195 9.1 9.1.1 GACSIhFeICmAiTcIaOlN m LoCdI eMl ..O..D...E..L... .D...E..V...E..L..O...P..M....E..N...T... ........................................................................................................................................................ 1 29090 9.1.2 Biochar ......................................................................................................................................... 207 9.2 9.2.1 BIOIMntAeSgSr IaNtTioEnG RoAf TgEaDs iGfiAeSrI FwICitAhT CIOCNG CTO...M...B...I.N...E..D... .C...Y..C..L...E.. .L...C...I. .M....O...D...E..L.. ......................................................... 2 20181 9.2.2 Emissions from BIGCC systems ......................................................................................... 212 9.2.3 Water requirement BIGCC .................................................................................................. 216 9.2.4 Integration of BIGCC with EWF Nexus .......................................................................... 216 9.3 9.3.1 CARCBaOrbNo CnA CPTaUpRtuEr..e.. .T...e..c...h..n...o..l.o...g..y... ...................................................................................................................................................................................... 2 21177 9.3.2 Integration of CC with BIGCC ............................................................................................ 219 9.3.3 The utilisation of CO for fertilization ........................................................................... 221 2 CHAPTER 10 SCENARIO DEVELOPMENT AND RESULTS ............................................223 10.1 10.2 OPTIMUM FOSSIL FUEL ENERGY – WATER CONFIGURATION: ............................................. 223 10.2.1IN TSEcGeRnAaTrEioD 1A S–S CESoSnMvEeNnTti oOnF aTlH ME oQdAeT ..A..R... .E...W....F... .N...E...X..U...S.. ........................................................................................................ 2 22257 10.2.2 Scenario 2 – Integration of BIGCC .................................................................................. 231 10.2.3 Scenario 3 - Integration of biochar ................................................................................ 235 10.2.4 Scenario 4 – Integration of CC .......................................................................................... 237 10.2.5 Scenario 5 - Integration of CC with CCGT and stand-alone BIGCC .................. 240 10.2.6 Scenario 6 - Integration of CC with CCGT and BIGCC (BECCS). ......................... 242 10.2.1 Scenario 7 - Integration of PV and BECCS (CC and BIGCC). ................................ 244 10.2.2 Scenario Comparison ............................................................................................................ 247 10.3 10.4 WATER FOOTPRINT .................................................................................................................. 250 10.4.1A RLAoBcIAaNl iGmUpLaF cStI MonU LAArTaIbOiNa Rn EGSuUlLf T..S........................................................................................................................................................................... 2 25522 10.4.2 Regional Assessment of Arabian Gulf ............................................................................ 253 ix
Description: