ebook img

DEVELOPMENT OF ROBUST AB INITIO METHODS - iOpenShell PDF

309 Pages·2014·7.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DEVELOPMENT OF ROBUST AB INITIO METHODS - iOpenShell

DEVELOPMENTOFROBUSTABINITIOMETHODSFORDESCRIPTIONOF EXCITEDSTATESANDAUTOIONIZINGRESONANCES by DmitryZuev ADissertationPresentedtothe FACULTYOFTHEUSCGRADUATESCHOOL UNIVERSITYOFSOUTHERNCALIFORNIA InPartialFulfillmentofthe RequirementsfortheDegree DOCTOROFPHILOSOPHY (CHEMISTRY) May2014 Copyright 2014 DmitryZuev Acknowledgements First of all I would like to express greatest gratitude to my advisor - Professor Anna Krylov. It was a great honor for me to be a part of her bright group all these 5 years. Without her advice, support and motivation throughout all my years in graduate school this work would not be possible. She was always source of inspiration and I knew that herdoorisalwaysopenifIneedhelporadvice. AfteralltheseyearsworkingwithAnna Ilearntthatsheisagreatscientist,leaderandjustagoodperson. The group under the strict guidance by Anna has always been full with brilliant and helpful people. I would like to thank Professor Ksenia Bravaya for helping me with making first steps in mastering the field of quantum chemistry. Her diligence and willingness to help were one of the determinant factors in succeeding at my projects. Dr. Zhenya Epifanovsky was the first person who taught me real programming in C++ whichallowedmetogetajobasasoftwaredeveloper. Bylookingathishigh-classcode I always had an example and motivation to be a good programmer. Dr. Thomas Jagau wasafreshbloodforourgroupwhohelpedustodevelopnewapproachesindescribing ii resonances. His expertise and punctuality allowed us to look at the old problem from thecompletelydifferentangle. I would like to thank Dr. Kirill Khistyaev and Nastya Gunina for being good lab- mates and friends. Besides them I would like to thank other friends outside the lab - IvanGrishagin,AndreyRudenko,AnatolyDryga,SergeyMukhin. Allofthemtogether made my life in Los Angeles interesting and enjoyable. I especially would like to thankmyearlydeceasedfriendMishaVinaykin. WewereverygoodfriendssinceSaint PetersburgStateUniversityandhewasthepersonwhoencouragedmetoapplytoUSC forgraduatestudies. Histragicdeathwasabiglossforscientificcommunityandallhis friends. I would also like to thank other members of Chemistry Department who taught me many important things both in classes and outside it. Professor Curt Wittig taught very interesting class and his lectures were always fun to listen to. Professor Stephen Brad- forth and Alexander Benderskii taught a very useful class on Molecular Spectroscopy which helped me to look at the molecules and its properties from a different perspec- tive. I would like to thank Professor Andrey Vilesov who told me and Misha about USC Chemistry Department and explained how to enter graduate school. I would like to thank Michele Dea - the person who is always ready to help with any administrative mattersandresolveanyproblems. iii I would like to thank my parents in Russia who were always supportive and made it possible for me to attend and graduate from one of the best Physics Departments in Russia. WithoutthemIwouldneverachievewhatIhavenow. Graduate school was a time when I was rapidly growing - both intellectually and personally. It was the time when I met many smart people, made very good friends and learntveryimportantlifelessons. Iwillalwaysrememberitasoneofthemostimportant andinterestingchaptersofmylife. iv Table of contents Acknowledgements ii Listoftables viii Listoffigures xii Abbreviations xvii Abstract xix Chapter1: Introductionandoverview 1 1.1 Excitedstatesandresonancesinbiochromophores . . . . . . . . . . . . 1 1.2 Autoionizingresonancestatesinatomicandmolecularsystems . . . . . 3 1.3 Improvementofefficiencyandrobustnessofexcitedstatemethods . . . 9 1.4 Chapter1references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter2: Electronic structure of the two isomers of the anionic form of p-coumaricacidchromophore 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Computationaldetails . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 StructuresandchargedistributionsofpCA− . . . . . . . . . . 28 2.3.2 Ab initio calculations of the electronically excited and ionized statesofpCA− . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Molecularorbitalframework . . . . . . . . . . . . . . . . . . . 44 2.3.4 Theoryversusexperiment . . . . . . . . . . . . . . . . . . . . 46 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5 Chapter2references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Chapter3: Effectofmicrohydrationontheelectronicstructureofthechro- mophoresofthephotoactiveyellowandgreenfluorescentproteins 62 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Computationaldetails . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 v 3.3 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 Optimized structures and binding energies of the mono- and dihydratedchromophores . . . . . . . . . . . . . . . . . . . . . 69 3.3.2 ElectronicallyexcitedandionizedstatesofmicrohydratedpCA− 72 3.3.3 Theory versus experiment: microhydrated clusters of the PYP chromophore . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.5 Chapter3references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter4: Complex-scaledequation-of-motioncoupled-clustermethodwith singleanddoublesubstitutionsforautoionizingexcitedstates 89 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 Complex-scalingformalism: GeneraltheoryandEOM-EE-CCSDimple- mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 C-productversusscalarproduct . . . . . . . . . . . . . . . . . 100 4.2.2 One-andmanyelectronbasissets . . . . . . . . . . . . . . . . 102 4.2.3 Complex-scaledEOM-EE-CCSD . . . . . . . . . . . . . . . . 103 4.3 Resultsanddiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.1 Two-electronsystems: 2s2 resonancesinHeandH− . . . . . . 107 4.3.2 Many-electronssystems: Beatom . . . . . . . . . . . . . . . . 125 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.5 Chapter4references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Chapter5: Complex absorbing potentials within EOM-CC family of meth- ods: Theory,implementation,andbenchmarks 139 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.4 Benchmarkcalculations . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.1 ComputationalDetails . . . . . . . . . . . . . . . . . . . . . . 153 5.4.2 TheImpactoftheCAPOnset . . . . . . . . . . . . . . . . . . 159 5.4.3 TheRoleofDiffuseBasisFunctions . . . . . . . . . . . . . . . 160 5.4.4 TheRoleoftheValenceBasisSet . . . . . . . . . . . . . . . . 163 5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.5.1 2Π ResonanceinN− . . . . . . . . . . . . . . . . . . . . . . . 169 g 2 5.5.2 2ΠResonanceinCO− . . . . . . . . . . . . . . . . . . . . . . 173 5.5.3 2Π ResonanceinC H− . . . . . . . . . . . . . . . . . . . . . 174 g 2 2 5.5.4 2B ResonanceinC H− . . . . . . . . . . . . . . . . . . . . . 176 2g 2 4 5.5.5 2B ResonanceinCH O− . . . . . . . . . . . . . . . . . . . . 179 1 2 5.5.6 2Π ResonanceinCO− . . . . . . . . . . . . . . . . . . . . . . 181 u 2 5.5.7 2A and2B ResonancesinC H− . . . . . . . . . . . . . . . . 183 u g 4 6 5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 vi 5.7 Chapter5references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Chapter6: Cholesky representation of electron-repulsion integrals within coupled-clusterandequation-of-motionmethods 199 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.2.1 Choleskyalgorithm . . . . . . . . . . . . . . . . . . . . . . . . 202 6.2.2 Resolution-of-the-identityalgorithm . . . . . . . . . . . . . . . 205 6.3 RI/CDCCSDandEOM-CCSDmethods: Theory . . . . . . . . . . . . 206 6.3.1 Coupled-clusterequationswithsingleanddoublesubstitutions . 206 6.3.2 EOM-EE/SF-CCSDandCD/RIEOM-EE/SF-CCSD . . . . . . 211 6.3.3 EOM-IP-CCSDandCD/RIEOM-IP-CCSD . . . . . . . . . . . 215 6.3.4 EOM-EA-CCSDandCD/RIEOM-EA-CCSD . . . . . . . . . . 216 6.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.6 Chapter6references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Chapter7: Root-specific eigenvalue solvers in the EOM family of methods: Implementationandbenchmarks 240 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 7.2 Equation-of-motion(EOM)familyofmethods . . . . . . . . . . . . . . 242 7.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.3.1 Davidson’smethod . . . . . . . . . . . . . . . . . . . . . . . . 244 7.3.2 GeneralizedPreconditionedLocallyMinimalResidual(GPLMR) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 7.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.6 Chapter7references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Chapter8: Futurework 263 8.1 Chapter8references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Bibliography 269 vii List of tables 2.1 Verticaldetachmentenergies(VDE,eV)forthetwopCA− isomersesti- mated by Koopmans theorem (KT, eV) and computed with EOM-IP- CCSD/6-311+G(df,pd)//RI-MP2/aug-cc-pVDZ. EOM-IP-CCSD/6-311+G(df,pd) adiabatic detachment energies (ADE, eV)computedusingωB97X/aug-cc-pVDZoptimizedgeometriesofthe neutralsforthefirstionizedstateandIP-CISD/6-31+G(d,p)forthesub- sequentonesarealsogiven. . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Verticalexcitationenergies(E ,eV)andoscillatorstrengths(f ,inparen- ex l thesis) of the carboxylate pCA− isomer. The RI-MP2/aug-cc-pVDZ optimizedgeometrieswereusedfortheexcitationenergycalculations. . 34 2.3 Verticalexcitationenergies(E ,eV)andoscillatorstrengths(f ,inparen- ex l thesis) of the phenolate pCA− isomer. The RI-MP2/aug-cc-pVDZ opti- mizedgeometrieswereusedfortheexcitationenergycalculations. . . . 36 3.1 Vertical excitation energies (eV), oscillator strengths (f , in parenthesis) l and detachment energies (eV) of the microhydrated pCA−. Excitation energies and transition dipole moments were computed by EOM-EE- CCSD/6-31+G(d,p) and EOM-EE-CCSD/6-31+G(d), respectively, ion- izationenergies—byEOM-IP-CCSD/6-311+G(df,pd). . . . . . . . . . 73 3.2 Vertical excitation and detachment energies (eV) of the microhydrated deprotonatedHBDI.ExcitationenergieswerecomputedbySOS-CIS(D)/cc- pVTZ,detachmentenergies—byωB97X-D/6-311++G(2df,2pd). . . . 75 4.1 Gaussian basis set exponents (α) of the first basis function and scaling factors(k,αi+1 =αi/k)usedintheeven-temperedseries. . . . . . . . 109 4.2 Complexenergiesofthe2s2resonanceinheliumcalculatedbycs-EOM- EE-CCSDindifferentbases. . . . . . . . . . . . . . . . . . . . . . . . 110 viii 4.3 Energies of the 2s2 resonance in H− calculated by cs-EOM-EE-CCSD in different bases. ∆E is given relative to the 1s ground state of neutral hydrogencomputedforcorrespondingbasisset. . . . . . . . . . . . . . 111 4.4 Energiesofthe1s22p3sresonanceinBecalculatedindifferentbases. . 128 5.1 EOM-EE-CCSDexcitationenergiesandexpectationvalues(cid:104)R2(cid:105)forsev- eral excited states of CO and C H computed using the aug-cc-pVTZ 2 4 basis set with additional diffuse basis functions placed at the all heavy atoms(A)oratthecenterofthemolecule(C). . . . . . . . . . . . . . . 155 5.2 Dependence of resonance positions E and widths Γ of the 2Π reso- R nanceofCO− andthe2B resonanceofC H− ontheonsetoftheCAP. 2g 2 4 Values for ηopt, (η·dE/dη)η=ηopt, and (cid:107)W(cid:107) are also reported. All values computed at the CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) level oftheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.3 ResonancepositionsE andwidthsΓaswellasvaluesforη and(cid:107)W(cid:107) R opt for the 2Π resonance state of CO− computed by CAP-EOMEA-CCSD usingtheaug-cc-pVTZbasissetwithdifferentadditionalaugmentation. The variations reported for E and Γ refer to the change of these quan- R tities upon varying the most important CAP onset parameter by 0.5 a.u. (seeSection5.4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.4 Resonance positions E and widths Γ as well as values for η and R opt (cid:107)W(cid:107)forthe2B resonancestateofC H− computedbyCAP-EOMEA- 2g 2 4 CCSD using the aug-cc-pVTZ basis set with different additional aug- mentation. The variations reported for E and Γ refer to the change of R these quantities upon varying the most important CAP onset parameter by0.5a.u. (seeSection5.4.2). . . . . . . . . . . . . . . . . . . . . . . 158 5.5 Resonance positions E and widths Γ as well as values for η for the R opt 2Π resonance state of CO− computed by CAP-EOMEA-CCSD using different valence basis sets. For comparison purposes, EOMEE-CCSD excitationenergiesforseveralboundstatesofCOarereportedaswell. . 164 5.6 Resonance positions E and widths Γ as well as values for η for the R opt 2B resonancestateofC H− computedbyCAP-EOMEA-CCSDusing 2g 2 4 different valence basis sets. For comparison purposes, EOMEE-CCSD excitationenergiesforseveralboundstatesofC H arereportedaswell. 165 2 4 ix 5.7 Energy decomposition analysis for the real and imaginary parts of the energiesa of the 2Π resonance of CO− and the 2B resonance of C H− 2g 2 4 computed by CAP-EOM-EA-CCSD using different valence basis sets. Allvaluesinatomicunits. . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.8 ComputationaldetailsofCAP-EOM-EA-CCSDcalculationsonN−,CO−, 2 C H−,C H−,CH O−,CO−,andC H−. . . . . . . . . . . . . . . . . . 168 2 2 2 4 2 2 4 6 5.9 ResonancepositionsE andwidthsΓforthe2Π resonancestateofN− R g 2 obtainedusingdifferenttheoreticalmethods. . . . . . . . . . . . . . . . 172 5.10 ResonancepositionsE andwidthsΓforthe2ΠresonancestateofCO− R obtainedusingdifferentmethods. . . . . . . . . . . . . . . . . . . . . 173 5.11 Resonance positions E and widths Γ for the 2Π resonance state of R g C H− obtainedusingdifferentmethods. . . . . . . . . . . . . . . . . . 175 2 2 5.12 Resonance positions E and widths Γ for the 2B resonance state of R 2g C H− obtainedusingdifferentmethods. . . . . . . . . . . . . . . . . . 178 2 4 5.13 Resonance positions E and widths Γ for the 2B resonance state of R 1 CH O− obtainedusingdifferentmethods. . . . . . . . . . . . . . . . . 180 2 5.14 Resonance positions E and widths Γ for the 2Π resonance state of R u CO− obtainedusingdifferentmethods. . . . . . . . . . . . . . . . . . . 182 2 5.15 Resonance positions E and widths Γ for the 2A and 2B resonance R u g statesofC H− (1,3-butadieneanion)obtainedusingdifferentmethods. . 184 4 6 6.1 Intermediates for CCSD calculations and estimates to store and com- putethem(closed-shellcase). . . . . . . . . . . . . . . . . . . . . . . . 209 6.2 I and T intermediates for EOM-CCSD and estimated cost to store and computethem(closed-shellcase). . . . . . . . . . . . . . . . . . . . . 213 6.3 Test systems used for benchmarks, converged CCSD correlation ener- gies(hartree),andnumberofCCiterations. . . . . . . . . . . . . . . . 221 6.4 CCSDerrorsandwalltimes(sec)using12coresfortest1-test3 . . . . . 222 6.5 CCSDerrorsandwalltimes(sec)using12coresfortest4-test6. . . . . 223 6.6 WalltimeperCCSDiteration(sec)using80GBRAM. . . . . . . . . . 225 6.7 EOM-CCSD energies for the 2 lowest states in each irrep and errors in energydifferences(eV),andwalltimesforEOM(sec)using12cores. . 228 x

Description:
Chapter 3: Effect of microhydration on the electronic structure of the chro- .. 6.4 CCSD errors and wall times (sec) using 12 cores for test1-test3 . radioactive nuclear decay, molecular autodissociation, autoionization, and inelastic scat-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.