ETH Library Development of Oxide Dispersion Strengthened Titanium Aluminides for Additive Manufacturing Doctoral Thesis Author(s): Kenel, Christoph Publication date: 2016 Permanent link: https://doi.org/10.3929/ethz-a-010860058 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 23785 Development of Oxide Dispersion Strengthened Titanium Aluminides for Additive Manufacturing A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by CHRISTOPH KENEL MSc ETH born on 06.08.1987 citizen of Arth SZ accepted on the recommendation of Prof. Dr. Konrad Wegener, examiner Dr. Christian Leinenbach, co-examiner Prof. Dr. Gordon Tatlock, co-examiner 2016 Acknowledgement This thesis was written during my time at the Swiss Federal Laboratories for Materials Science and Technology (Empa) in the group Alloy Design for AdvancedProcessingTechnologies(ADAPT)fromFebruary2013untilAugust 2016 in collaboration with the Institute of Machine Tools and Manufacturing (IWF) of ETH Zurich. The work was conducted in the frame of the multi- national EU FP7 research project Oxide Dispersion Strengthened Materials for the Additive Manufacture of High Temperature Components in Power Generation (OXIGEN). IwouldliketothankmysupervisorProf. Dr. KonradWegener(IWF-ETH) for giving me the opportunity to do my PhD on this topic. His inputs and, in a positive sense, critical questions beyond the material science part of this study are highly appreciated. I am very grateful to my supervisor at Empa, Dr. Christian Leinenbach, headoftheADAPTgroup,forgivingmehistrustandthefreedomtopursue myresearchinatrulyconstructiveandopen-mindedenvironment. Heprovided me with the necessary infrastructure, his guidance and scientific input to successfully complete this thesis. Thisthesiswouldnothavebeenpossibleinthisformwithoutcontributions of many people, working at Empa and elsewhere. They provided materi- als, technical support, measurements, access to equipment, scientific input, pleasant and fruitful discussions and advice throughout my time at Empa. Special thanks to Toni Ivas, Adrian Lis, Nico Weyrich, Ariyan Arabi-Hashemi, Xiaoshuang Li, Georgia Dasargyri, Wookjin Lee, Hansruedi Elsener, Michael Koster, Sara Romer, Martin Sauder, Sascha Populoh, Remo Widmer, Erwin Pieper,andBarbaraZeps,aswellasthepastandpresentmembersoftheLabs "Joining Technologies and Corrosion" and "Advanced Materials Processing". I also thank Thomas Bauer and Adriaan Spierings (Inspire AG, CH), Gordon i Tatlock,KeithArnoldandKarlDawson(UniversityofLiverpool,UK),Alberto Colella (Matres, Italy) and Carl Hauser and Josh Barras (TWI, UK) from the OXIGEN consortium for their support and discussions throughout our project. Finally, I express my gratitude to Daniel Grolimund, Vallerie Ann Samson, Julie Fife, Steven van Petegem and Helena van Swygenhoven from PSI for their support with the in situ diffraction experiments. I would like to thank my family for their support allowing me to pursue my path in science. A special thank you to my partner Johanna Nyffeler for her advice and patience throughout these stressful years. TheresearchleadingtotheseresultshasreceivedfundingfromtheEuropean UnionSeventhFrameworkProgram[FP7/2007-2013]undergrantagreement no. 310279 (OXIGEN). ii Contents 1 Introduction 1 2 State of the art 5 2.1 Constitution of titanium aluminides . . . . . . . . . . . . . 5 2.2 Microstructure formation and related properties . . . . . . . 8 2.3 State-of-the-art higher-order titanium aluminide alloys . . . 17 2.4 Powder-based processing of titanium aluminides . . . . . . . 19 2.5 Reinforced titanium aluminides . . . . . . . . . . . . . . . . 31 2.6 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . 34 3 Experimental and analytical methods 37 3.1 Materials and consolidation methods . . . . . . . . . . . . . 37 3.2 Materials characterization. . . . . . . . . . . . . . . . . . . 42 3.3 Materials testing . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Computational thermodynamics . . . . . . . . . . . . . . . 49 4 Microstructure formation of Ti-Al alloys at high cooling rates 51 4.1 Experimental setup and concept . . . . . . . . . . . . . . . 51 4.2 Computational framework. . . . . . . . . . . . . . . . . . . 61 4.3 Influence of cooling rate and composition in binary Ti-Al . . 66 4.4 Influence of the ternary alloying elements Nb and Mo . . . . 81 4.5 Alloy design of titanium aluminides for additive manufacturing 95 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 Microstructure and oxide particle stability in an ODS γ-TiAl alloy 101 5.1 Alloy design and selection . . . . . . . . . . . . . . . . . . . 101 5.2 Processing results and discussion . . . . . . . . . . . . . . . 107 5.3 Summary and conclusions . . . . . . . . . . . . . . . . . . . 124 iii Contents 6 Performance of ODS titanium aluminides 125 6.1 High temperature degradation behavior in air . . . . . . . . 125 6.2 Mechanical properties at low and high temperature . . . . . 140 6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7 Selective laser melting of a β-solidifying ODS γ-TiAl alloy 149 7.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . 149 7.2 SLM processing results . . . . . . . . . . . . . . . . . . . . 153 7.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . 169 8 Summary and Outlook 171 iv Abstract Titanium aluminides gained a lot of interest over the last decades due to a potential weight reduction and increased performance of high temperature components. Further increasing their performance at high temperatures is a crucialfactortocompetewiththeheavierNi-basesuperalloys. Processingthis class of structural intermetallics using additive manufacturing is also of great interest to produce novel parts with unprecedented complexity. In this work an oxide dispersion strengthened (ODS) titanium aluminide alloy is developed takingintoaccountthenon-equilibriumconditionsduringbeam-basedadditive manufacturing. In order to understand the influence of cooling rate and composition on microstructure formation, rapid solidification experiments on binary Ti-Al and ternary Ti-Al-Nb and Ti-Al-Mo alloys are performed using a novelexperimentalliquiddropletquenchingtechnique. Incombinationwithin situ X-ray diffraction experiments at a synchrotron light source, the observed behavior of Ti-Al-(Nb, Mo) is mapped and compared to thermodynamic simulations based on the CALPHAD approach taking into account the non- equilibrium nature of the process. Based on this fundamental study, a matrix alloy is selected for production of ODS titanium aluminide by mechanical alloying. Consolidation tests using spark plasma sintering, selective laser meltinganddirectmetaldepositionshowtheinfluenceoftheprocessingroute on the formed microstructure and the resulting dispersoid size. Apart from the effects of alloy composition and ODS particle addition on microstructure andprocessingalsotheinfluenceonmechanicalperformanceanddegradation behaviorisstudied. Comparedtothedispersoid-freealloy, theODSvariantis superiorintermsofyieldstressandultimatetensilestrengthat293to1073K as well as more oxidation resistant. Finally it is demonstrated that complex lattice structures can be produced from the ODS alloy by selective laser melting. Additionally, the beneficial effect of adapted re-scanning strategies on the occurrence of cracking is discussed. v Zusammenfassung Seit rund drei Jahrzehnten sind Titanaluminide sind im Fokus der Forschung, da ihr Einsatz Gewichtseinsparungen und bessere Eigenschaften in Hochtem- peraturkomponenten verspricht. Eine kontinuierliche Verbesserung dieser Eigenschaften ist ein entscheidender Punkt um eine Konkurrenz zu den deut- lich dichteren Ni-Basis Superlegierungen zu schaffen. Die additive Fertigung dieserKlassevonintermetallischenStrukturwerkstoffenistzudemseitkurzem von grossem Interesse um Komponenten mit bisher unerreichter Komplexität zuproduzieren. ImRahmendieserArbeitwurdeeineoxid-dispersionsverstärkte (ODS) TiAl Legierung entwickelt, wobei die Nichtgleichgewichtsbedingun- gen während der strahlbasierten additiven Fertigung miteinbezogen wurden. Eine neuartige Methode, basierend auf abgeschreckten Metalltropfen, erlaubt den Einfluss der Kühlrate als auch der Legierungszusammensetzung auf die ausgebildete Mikrostruktur in Ti-Al, Ti-Al-Nb und Ti-Al-Mo zu untersuchen. In Kombination mit in situ Röntgenbeugungs-Experimenten an einer Syn- chrotronquelle wurde das Verhalten der Ti-Al-(Nb,Mo) Systeme bestimmt undunterBerücksichtigungderNichtgleichgewichtsbedingungenderProzesse mit thermodynamischen Berechnungen verglichen. Basierend auf dieser Un- tersuchung wurde eine Zusammensetzung für die Produktion einer ODS Legierung durch mechanisches Legieren ausgewählt. Konsolidierungstests mittels Spark Plasma Sintern, Selektivem Laserschweissen und Laserauftrags- schweissen zeigen den Einfluss des Prozesses auf die Mikrostrukturbildung und die resultierende Partikelgrösse. Zusätzlich wurde auch der Einfluss der Oxidpartikel auf die mechanische Festigkeit und Oxidationsbeständigkeit bes- timmt. Die verstärkte Variante zeigt eine höhere Dehn- und Streck-Grenze sowie Oxidationsbeständigkeit verglichen mit der unverstärkten Variante. Am Ende der Arbeit wird die Herstellung von komplexen Gitterstrukturen mittels Selektiven Laserschweissen demonstriert. Der positive Einfluss von diversen Wiederaufschmelz-Strategien auf die Rissbildung wird ebenfalls diskutiert. vii
Description: