ebook img

Development of Mycobacterium tuberculosis DNA gyrase as a target for antibacterial chemotherapy PDF

291 Pages·2010·17.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of Mycobacterium tuberculosis DNA gyrase as a target for antibacterial chemotherapy

Development of Mycobacterium tuberculosis DNA gyrase as a target for antibacterial chemotherapy Shantanu Karkare John Innes Centre September 2010 This thesis is submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of East Anglia. © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the authors prior, written consent. 1 A BSTRACT Bacterial DNA gyrase is one of the proven targets for antibacterial chemotherapy. It is a type II DNA topoisomerase found in all bacteria. Most of our current information is related to the enzyme from Escherichia coli (E. coli), a Gram-negative bacterium, with limited information about the gyrase from Mycobacterium tuberculosis (M. tuberculosis), a Gram-positive bacterium. The emergence of multidrug-resistant tuberculosis (MDR-TB) and extremely drug- resistant tuberculosis (XDR-TB) with no new classes of drugs has posed a great challenge for the effective and short-term treatment of tuberculosis. Thus, it has become important to understand and investigate established drug targets, such as DNA gyrase, in M. tuberculosis. Although there are similarities between the gyrases from these two bacteria, there are key differences, which can be potentially exploited for identifying new drugs for tuberculosis. This work describes the identification of a putative Ca2+-binding site in M. tuberculosis GyrA and discovery of naphthoquinones as novel inhibitors of DNA gyrase. In the absence of a complete crystal structure for M. tuberculosis GyrA, a homology model was constructed for biochemical and site-directed mutagenesis experiments involving the putative Ca2+-binding site. These experiments indicate that Ca2+ has a potential regulatory role in M. tuberculosis. Virtual screening was performed to identify novel inhibitors targeting the Ca2+-binding site. Diospyrin, a naphthoquinone was identified as a potent inhibitor of DNA gyrase. This work has demonstrated that diospyrin inhibits DNA gyrase with a novel mechanism and that the GyrB N-terminal domain is the potential target site. Docking studies were performed to predict the diospyrin-binding site in GyrB. 2 T C ABLE OF ONTENTS ABSTRACT ................................................................................................................ 2 LIST OF FIGURES ...................................................................................................... 7 LIST OF TABLES ..................................................................................................... 14 ACKNOWLEDGEMENTS .......................................................................................... 17 Chapter 1: General Introduction................................................................................. 18 1.1 Tuberculosis ..................................................................................................... 18 1.2 DNA topology .................................................................................................. 22 1.3 Biological significance of DNA topology........................................................ 24 1.4 DNA topoisomerases ....................................................................................... 25 1.4.1 Introduction ............................................................................................... 25 1.4.2 Type IA topoisomerases ............................................................................ 28 1.4.3 Structure of type IA topoisomerase........................................................... 30 1.4.4 Mechanism of action of type IA topoisomerase ....................................... 32 1.4.5 Type IB topoisomerases ............................................................................ 33 1.4.6 Mechanism of action of type IB topoisomerases ...................................... 35 1.4.7 Type II DNA topoisomerases.................................................................... 37 1.4.8 Structure of Type IIA topoisomerases ...................................................... 38 1.4.9 ATP hydrolysis by type II topoisomerases ............................................... 41 1.4.10 Mechanism of type IIA topoisomerases .................................................. 41 1.5 DNA gyrase ...................................................................................................... 44 1.5.1 Introduction ............................................................................................... 44 1.5.2 DNA gyrase strand passage mechanism ................................................... 49 1.5.3 DNA wrapping by DNA gyrase ................................................................ 49 1.5.4 DNA cleavage-religation reaction by DNA gyrase .................................. 50 1.5.5 ATP hydrolysis by DNA gyrase ............................................................... 52 1.5.6 DNA gyrase in eukaryotes ........................................................................ 54 1.6 Type IIB topoisomerases ................................................................................. 54 1.7 DNA gyrase inhibitors ..................................................................................... 56 1.7.1 Fluoroquinolones ...................................................................................... 57 1.7.2 Aminocoumarins ....................................................................................... 66 1.7.3 Simocyclinones ......................................................................................... 69 1.7.4 Cyclothialidine .......................................................................................... 71 1.7.5 GSK299423 ............................................................................................... 73 1.7.6 CcdB .......................................................................................................... 75 3 1.7.7 Microcin B17 ............................................................................................ 76 1.8 Other proteinaceous inhibitors ......................................................................... 78 1.9 Aim of the project ............................................................................................ 80 Chapter 2: Materials & Methods ................................................................................ 81 2.1 Bacteriology ..................................................................................................... 81 2.1.1 E. coli and M. smegmatis strains ............................................................... 81 2.1.2 Media and antibiotics ................................................................................ 82 2.1.3 Preparation of electrocompetent M. smegmatis cells ................................ 83 2.1.4 Preparation of chemically competent E. coli cells .................................... 84 2.1.5 Transformation .......................................................................................... 84 2.2 Molecular biology methods.............................................................................. 85 2.2.1 Oligonucleotides ....................................................................................... 85 2.2.2 Preparation of supercoiled and relaxed pBR322* ..................................... 87 2.2.3 Plasmid DNA purification......................................................................... 88 2.2.4 DNA concentration determination ............................................................ 88 2.2.5 PCR and cloning ....................................................................................... 89 2.2.6 Site-directed mutagenesis.......................................................................... 90 2.2.7 RT-PCR (reverse-transcriptase) ................................................................ 92 2.2.8 Agarose gel electrophoresis ...................................................................... 92 2.2.9 DNA sequencing ....................................................................................... 93 2.3 Protein Methods ............................................................................................... 94 2.3.1 Purification of M. tuberculosis DNA gyrase and mutants ..................... 94 2.3.2 SDS-PAGE ................................................................................................ 95 2.3.3 Dialysis ...................................................................................................... 96 2.3.4 Protein concentration ................................................................................ 97 2.3.5 Protein concentration determination ......................................................... 97 2.3.6 Limited Proteolysis ................................................................................... 98 2.3.7 Electroblotting & Edman sequencing ....................................................... 98 2.3.8 Peptide mass fingerprinting by Orbitrap mass spectrometer .................... 99 2.3.9 Circular dichroism ................................................................................... 100 2.4 Enzyme assays ............................................................................................... 102 2.4.l DNA supercoiling, relaxation, and decatenation assays ......................... 102 2.4.2 DNA wrapping assay .............................................................................. 102 2.4.3 Promoter activity assay (β-galactosidase activity assay) ........................ 103 2.5 Biophysical techniques................................................................................... 104 2.5.1 ICP-AES .................................................................................................. 104 4 2.5.2 Nano-ESI MS .......................................................................................... 106 2.5.3 BIAcore ................................................................................................... 107 2.5.4 Protein crystallography ........................................................................... 108 2.6 Bioinformatics software ................................................................................. 109 2.6.1 Clustal W and MUSCLE ......................................................................... 109 2.6.2 PSIPRED ................................................................................................. 110 2.6.3 PROSITE ................................................................................................ 110 2.6.4 Phyre and BioInfoBank MetaServer ....................................................... 110 2.6.5 Insight II .................................................................................................. 111 2.6.6 AutoDock Vina 1.0.2 .............................................................................. 111 2.6.7 Discovery Studio 2.5.5 ............................................................................ 112 Chapter 3: Unique features of M. tuberculosis DNA gyrase ................................ 113 3.1 Purification of M. tuberculosis DNA gyrase ................................................. 114 3.2 Bioinformatics analysis of M. tuberculosis DNA gyrase............................... 115 3.3 M. tuberculosis GyrB promoter analysis ....................................................... 116 3.3.1 RT-PCR for M. tuberculosis GyrB transcript ......................................... 117 3.3.2 Mass spectrometric analysis .................................................................... 120 3.3.3 GyrB N40∆ deletion mutant ................................................................... 121 3.3.4 Promoter analysis .................................................................................... 125 3.4 A putative Ca2+ -binding site in DNA gyrase ................................................. 130 3.4.1 EF-hand Ca2+ - binding domain .............................................................. 133 3.4.2 Model for the Ca2+- binding site ............................................................. 138 3.5 Conclusion ..................................................................................................... 144 Chapter4 : Investigation of a putative Ca2+-binding site in M. tuberculosis GyrA 148 4.1 Bacterial DNA gyrase Ca2+ selectivity ........................................................... 149 4.2 Ca2+-assisted Mg2+- dependent enzyme ......................................................... 153 4.3 SDM of the Ca2+-binding site ........................................................................ 163 4.4 Effect of EGTA on the activity of mutants .................................................... 174 4.5 Limited Proteolysis of GyrA .......................................................................... 177 4.6 Virtual screening at the Ca2+-binding site ...................................................... 183 4.6.1 Introduction ............................................................................................. 183 4.6.2 Docking-based virtual screening ............................................................. 184 4.7 Conclusion ..................................................................................................... 192 Chapter 5 : Identification and characterization of novel gyrase inhibitors ............. 196 5.1 Introduction .................................................................................................... 197 5.2 Quinolines ...................................................................................................... 198 5 5.3 Aaptamines and marine extracts .................................................................... 201 5.4 Naphthoquinones ........................................................................................... 205 5.5 Targets for naphthoquinones .......................................................................... 208 5.6 Naphthoquinones inhibits DNA gyrase ......................................................... 211 5.7 E. coli Inhibitory activity ............................................................................... 219 5.8 Diospyrin binding site ................................................................................... 220 5.8.1 M. tuberculosis GyrB-diospyrin complex ............................................... 221 5.8.2 E. coli GyrB43-diospyrin complex ......................................................... 225 5.9 Limited Proteolysis ........................................................................................ 229 5.10 Surface plasmon resonance .......................................................................... 233 5.11 ATP competition assay ................................................................................ 239 5.12 M. tuberculosis GyrB43- diospyrin complex ............................................... 241 5.13 Discussion .................................................................................................... 247 Chapter 6: General Discussion ................................................................................. 252 6.1 Introduction .................................................................................................... 252 6.2 M. tuberculosis GyrB promoter analysis ....................................................... 253 6.3 Putative Ca2+-binding site .............................................................................. 254 6.4 NovelDNA gyrase inhibitors ......................................................................... 261 APPENDIX ................................................................................................................. 265 Crystallisation trials ............................................................................................. 266 ABBREVIATIONS....................................................................................................... 269 REFERENCES ............................................................................................................ 270 6 L F IST OF IGURES Figure 1.1: M. tuberculosis stained with Zein-Neelsen stain ..................................... 18 Figure 1.2: A global map showing the estimated TB incidence rates by country in 2007. ........................................................................................................................... 20 Figure 1.3 : Mechanism of action of different TB drugs. .......................................... 21 Figure 1.4: Significance of DNA topoisomerase.. .................................................... 26 Figure 1.5: Classification of Topoisomerase based on structure and mechanism. .... 27 Figure 1.6: Domain alignment of type IA topoisomerase showing the structural diversity. ..................................................................................................................... 30 Figure 1.7: Structure of E. coli topo III and Archaeoglobus fulgidus reverse gyrase. .................................................................................................................................... 31 Figure 1.8: General mechanism of action of type I topoisomerase............................ 33 Figure 1.9: Detailed mechanism of human topoisomerase I.. ................................... 35 Figure 1.10: Structure of human topoI. ..................................................................... 36 Figure 1.11: Reactions catalysed by typeII topoisomerases ..................................... 37 Figure 1.12: Domain organisation of type IIA topoisomerases ................................. 39 Figure 1.13: Conserved functional domains in type II topoisomerases. .................... 40 Figure 1.14: Two-gate mechanism for type II A topoisomerase ............................... 42 Figure 1.15: Crystal structures of different domains of E. coli DNA gyrase............. 43 Figure 1.16: Electrostatic map of the GyrB' dimer and DNA duplex ........................ 47 Figure 1.17: Crystal structures of different domains of M. tuberculosis DNA gyrase .................................................................................................................................... 48 Figure 1.18: Crystal structures of GyrA C-terminal domain. .................................... 50 Figure 1.19: The two-metal ion mechanism for cleavage-religation reaction ........... 51 Figure 1.20: Interaction between GyrB24 and ATP showing hydrogen-bonds with different residues. ....................................................................................................... 52 Figure 1.21: Crystal structure of apo topo VI ............................................................ 55 Figure 1.22 : The DNA gyrase reaction and sites of action of gyrase inhibitors. ...... 56 Figure 1.23: Structures of fluoroquinolones. ............................................................. 58 Figure 1.24: Crystal structure of the topo IV-DNA-moxifloxacin complex. ............. 59 Figure 1.25: Quinolone-topo IV cleavage complex. .................................................. 60 Figure 1.26: S. aureus DNA gyrase in complex with ciprofloxacin and DNA ......... 60 7 Figure 1.27: MfpA, Qnr homologue found in M. tuberculosis. ................................. 65 Figure 1.28: The three main naturally-ocurring aminocoumarins: novobiocin, clorobiocin, and coumermycin A . ............................................................................ 67 1 Figure 1.29: Overlap of the novobiocin (green) and ADPNP (red) binding site at E. coli GyrB N-terminus (GyrB24). ............................................................................... 68 Figure 1.30: Simocyclinone D8 binds to GyrA59. .................................................... 70 Figure 1.31: Cyclothialidine inhibits the ATPase activity of the GyrB subunit.. ...... 72 Figure 1.32: GSK299423 a novel DNA gyrase inhibitor. .......................................... 74 Figure 1.33: CcdB with multiple interacting partners: CcdA and DNA gyrase. ....... 76 Figure 1.34: MccB17 chemical structure and gene cluster. ....................................... 77 Figure 2.1: Flowchart for the protein refolding experiment. .................................... 97 Figure 2.2: CD spectra of poly-L-lysine at pH 11.1 and placental collagen ............ 101 Figure 2.3: Illustration of ICP-AES for the detection of metals or cations.............. 105 Figure 2.4: Electrospray ionisation process. ............................................................ 107 Figure 3.1: SDS-PAGE (12%) of DNA gyrase subunits purified by affinity chromatography........................................................................................................ 114 Figure 3.2: Enzyme activity of purified M. tuberculosis DNA gyrase. ................... 115 Figure 3.3: Multiple sequence alignment of bacterial GyrB using ClustalW 1.83 .. 116 Figure 3.4: RT- PCR for M. tuberculosis GyrB transcripts ..................................... 119 Figure 3.5: Orbitrap analysis of M. tuberculosis GyrB ............................................ 121 Figure 3.6: Different fractions of GyrB N40∆ deletion mutant purified by HisTrap .................................................................................................................................. 122 Figure 3.7: Effect of GyrB N40∆ on the decatenation activity of M. tuberculosis DNA gyrase. ............................................................................................................. 123 Figure 3.8: Effect of GyrB N40∆ on the supercoiling and relaxation activity of M. tuberculosis DNA gyrase ......................................................................................... 124 Figure 3.9: Promoters of M. tuberculosis DNA gyrase. .......................................... 125 Figure 3.10: Screen capture of Artemis analysis of gyr promoter elements ............ 126 Figure 3.11: Colonies of M. smegmatis mc2-155 obtained by transformation of the cells with pSM-128, pSM-128-Met and pSM-128-Val plasmids ............................ 128 8 Figure 3.12: β-galactosidase activity recorded from the crude extract of M. smegmatis mc2-155 cells transformed with pSM-128, pSM-128-Val and pSM-128- Met respectively. ...................................................................................................... 129 Figure 3.13: DNA gyrase is the only type II topoisomerase in M. tuberculosis ...... 131 Figure 3.14: Multiple sequence alignment of bacterial GyrA using ClustalW 1.83 131 Figure 3.15: Multiples sequence alignment for GyrA from B. melitensis, M. tuberculosis and C. diphtheriae. .............................................................................. 132 Figure 3.16: The two major groups of EF-hands ..................................................... 134 Figure 3.17: The non-cannonical EF-hand Ca2+-binding sites ................................. 136 Figure 3.18: Illustration of differences between canonical and pseudo-EF hand .... 137 Figure 3.19: Sequence alignment for M. tuberculosis GyrA. .................................. 139 Figure 3.20: Homology model of M. tuberculosis GyrA Ca2+-binding site (MtGyrA- 1H71) based on the psychrophilic metalloprotease from Pseudomonas sp. (PDB code: 1H71). ............................................................................................................. 141 Figure 3.21: Homology model of M. tuberculosis GyrA Ca2+-binding site (MtGyrA- 1BQB) based on Staphylococcus aureus metalloproteinase (PDB code: 1BQB).... 142 Figure 3.22: Difference between the 3-D environments of the GyrA Ca2+ -binding site and the Staphylococcus aureus metalloproteinase (PDB id: 1BQB) template. . 144 Figure 3.23: The predicted Ca2+ -binding site in between the N- and C-terminal domains of M. tuberculosis DNA gyrase. ................................................................ 147 Figure 4.1: E. coli and M. tuberculosis DNA gyrase supercoiling assay in the presence of 6 mM Mg2+ and Ca2+. ............................................................................ 149 Figure 4.2: Supercoiling assay of M. tuberculosis and E. coli hybrid enzyme in the presence of 6 mM Mg2+ and 6 mM Ca2+. ................................................................. 150 Figure 4.3: Effect of EGTA dialysis on the supercoiling and decatenation activity of M. tuberculosis DNA gyrase. ................................................................................... 154 Figure 4.4: DNA relaxation assay in the presence and absence of 1 mM Ca2+ ....... 155 Figure 4.5: Time-course experiment to demonstrate the difference in the relaxation activity of GyrA dialysed in the absence and presence of EGTA............................ 156 Figure 4.6: Experimental plan for protein refolding experiment. ............................ 157 Figure 4.7: Effect of protein refolding in the presence and absence of EGTA on the supercoiling and relaxation activity of DNA gyrase.. .............................................. 162 9 Figure 4.8: Effect of protein refolding in the presence and absence of EGTA on the decatenation activity of DNA gyrase. ...................................................................... 163 Figure 4.9: Double mutation in the Ca2+ - binding site. ........................................... 164 Figure 4.10: Quadruple mutation in the Ca2+ - binding site. ................................... 164 Figure 4.11: Acidic amino-acids in MtGyrA-1H71 and MtGyrA-1BQB model that were mutated to alanine in side-directed mutagenesis experiments. ....................... 165 Figure 4.12: Effect of double (GyrA E508A, D509A) and quadruple mutations. .. 167 Figure 4.13: Effect of quadruple mutation (GyrA D504A, E508A, D509A, E514A) on the supercoiling activity under different assay conditions. ................................. 168 Figure 4.14: No significant effect of double (GyrA E508A, D509A) and quadruple mutations (GyrA D504A, E508A, D509A, E514A) on the relaxation activity ....... 169 Figure 4.15: Decatenation activity of the wild-type and quadruple mutant. ............ 170 Figure 4.16: Far-UV (180-260 nm) CD spectra of wild-type GyrA and GyrA D504A, E508A, D509A, E514A ........................................................................................... 171 Figure 4.17: The effect of quadruple mutation (D504A, E508A, D509A, and E514A) on DNA wrapping around GyrA. ............................................................................. 173 Figure 4.18: Effect of EGTA on the supercoiling and relaxation activity of the mutants. .................................................................................................................... 175 Figure 4.19: Far-UV (180-260 nm) CD spectra of wild-type GyrA (dialysed in 1 mM EGTA) and GyrA D504A, E508A, D509A, E514A (dialysed in 1 mM EGTA) .................................................................................................................................. 176 Figure 4.20: Tryptic digest of the M. tuberculosis GyrA in the absence of Ca2+ and in the presence of Ca2+ ............................................................................................ 178 Figure 4.21: Tryptic digest of the M. tuberculosis GyrB in the absence of Ca2+ and in the presence of Ca2+. ............................................................................................ 179 Figure 4.22: Trypsin digestion profile of M. tuberculosis GyrA in the presence and absence of Ca2+ at 30 min time ................................................................................. 180 Figure 4.23: Molecular weight estimation of the bands. .......................................... 181 Figure 4.24: The sequence coverage of band 2&8 (~47-kDa).. ............................... 182 Figure 4.25: Virtual screening of NCI diversity set II. ............................................ 185 Figure 4.26: List of 51 hit compounds from the virtual screening of NCI diversity set II centered at the Ca2+-binding site in M. tuberculosis GyrA. ................................. 186 10

Description:
15. Table 5.1: IC50 values for chloroquine and mefloquine based on supercoiling and relaxation assays. of Borrelia burgdorferi GyrA C-terminal domain (PDB code: 1SUU) (Corbett et al.,. 2004) and (B) Crystal Besides the endogenous DNA gyrase inhibitors, the conventional high- throughput
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.