IVAN RAVASENGA DEVELOPMENT OF MONOLITHIC PIXEL SENSORS FOR ALICE EXPERIMENT Tesi magistrale in Fisica Relatrice: prof.sa Stefania Beolรจ S econdo Relatore: Dott. Yasser Corrales Morrales Controrelatore: prof. Marco Costa Universitร di Torino Dipartimento di Fisica Torino, 14 Ottobre 2015 Alla mia famiglia e a tutte le persone che mi hanno sostenuto 2 Contents Introduction ....................................................................................................................................................... 7 Chapter 1: Heavy ion collisions physics ............................................................................................................. 9 1.1 The Quantum Chromodynamics ............................................................................................................... 9 1.2 Running coupling constant in QED and QCD ............................................................................................ 9 1.3 Big Bang model ....................................................................................................................................... 11 1.4 Transition phase diagram ....................................................................................................................... 13 1.5 QGP predictions ...................................................................................................................................... 14 1.6 Heavy ion collisions ................................................................................................................................ 14 1.6.1 Collision geometry ........................................................................................................................... 16 1.6.2 Collision details and space-time evolution ...................................................................................... 17 1.6.3 Particle multiplicity .......................................................................................................................... 20 1.6.4 Particle spectra and radial flow ....................................................................................................... 22 1.6.5 Anisotropic transverse flow ............................................................................................................. 24 1.6.6 Elliptic flow at LHC ........................................................................................................................... 27 1.6.7 Jet quenching and โ .................................................................................................................... 27 ๐ด๐ด 1.6.8 Hints on charmonium suppression .................................................................................................. 32 Chapter 2: ALICE ITS Upgrade .......................................................................................................................... 34 2.1 Current ITS .............................................................................................................................................. 35 2.1.1 Silicon Pixel Detector ....................................................................................................................... 36 2.1.2 Silicon Drift Detector ....................................................................................................................... 37 2.1.3 Silicon Strip Detector ....................................................................................................................... 38 2.2 Physics motivation for the ITS upgrade .................................................................................................. 38 2.3 Current ITS limitations ............................................................................................................................ 39 2.4 ITS upgrade overview ............................................................................................................................. 41 2.4.1 Detector layout overview ................................................................................................................ 42 2.4.2 Experimental conditions and running environment ....................................................................... 44 2.5 Pixel Chip ................................................................................................................................................ 44 2.5.1 Choice of Pixel Chip technology ...................................................................................................... 45 2.5.2 Pixel Chip development ................................................................................................................... 45 2.5.3 Particle detection ............................................................................................................................ 46 2.5.4 General requirements on the Pixel Chip ......................................................................................... 47 2.6 Pixel architectures .................................................................................................................................. 48 2.6.1 MISTRAL: a modular design ............................................................................................................. 49 2.6.2 MISTRAL: readout mode ................................................................................................................. 49 3 2.6.3 ALPIDE: general approach ............................................................................................................... 50 2.6.4 Hints on Priority Encoder ................................................................................................................ 51 2.6.5 ALPIDE: readout mode summary and parameters .......................................................................... 53 2.6.6 ALPIDE: beam test measurements .................................................................................................. 55 2.6.7 MISTRAL & ALPIDE: summary and comparison ............................................................................... 56 2.7 Modules and Staves in the OB and IB ..................................................................................................... 56 2.8 Flex Printed Circuit .................................................................................................................................. 57 2.8.1 FPC for Inner Barrel Stave ............................................................................................................... 58 2.8.2 FPC for Outer Barrel Stave............................................................................................................... 59 2.8.3 Pixel Chip to FPC connection ........................................................................................................... 60 2.9 Power Bus ............................................................................................................................................... 62 2.10 Stave configuration summary ............................................................................................................... 62 Chapter 3: Test of the FPC for the Outer Barrel Stave .................................................................................... 65 3.1 Test objectives ........................................................................................................................................ 65 3.2 Tested FPC .............................................................................................................................................. 65 3.3 Experiment steps .................................................................................................................................... 66 3.4 Eye diagram and BER measurements ..................................................................................................... 67 3.4.1 Bit Error Rate ................................................................................................................................... 67 3.4.2 Eye diagram ..................................................................................................................................... 67 3.4.3 Experimental setup ......................................................................................................................... 70 3.4.4 Measurement procedure ................................................................................................................ 71 3.4.5 Eye diagram and BER main results .................................................................................................. 72 3.5 Jitter measurements ............................................................................................................................... 77 3.5.1 A jitter definition and parametrization ........................................................................................... 77 3.5.2 Experimental setup and procedure ................................................................................................. 78 3.5.3 Experimental results ........................................................................................................................ 78 3.6 Conclusions ............................................................................................................................................. 82 Chapter 4: Study of the chip analog and digital parameters ......................................................................... 84 4.1 pALPIDEfs-v1 summary and pixel organization ...................................................................................... 84 4.2 In-pixel structure .................................................................................................................................... 86 4.2.1 Analog front-end section ................................................................................................................. 87 4.2.2 Digital front-end section .................................................................................................................. 87 4.3 Pixel indexing .......................................................................................................................................... 89 4.4 Pixel sector details .................................................................................................................................. 90 4.5 Test boards ............................................................................................................................................. 90 4 4.6 Chip software .......................................................................................................................................... 92 4.7 Test objectives ........................................................................................................................................ 93 4.8 First test: Threshold and Noise Occupancy Scan at different voltages .................................................. 94 4.8.1 Test procedure ................................................................................................................................ 94 4.8.2 Experimental results on VDDD variation ......................................................................................... 98 4.8.3 Experimental results on VDDA variation ....................................................................................... 101 4.8.4 Experimental results on VDDD&VDDA variation ........................................................................... 104 4.8.5 General conclusions for all cases ................................................................................................... 107 4.9 Second test: Threshold and Noise Occupancy Scan without the decoupling capacitors on DVDD ..... 107 4.9.1 Test procedure .............................................................................................................................. 107 4.9.2 Experimental results ...................................................................................................................... 108 4.9.3 Second test conclusions ................................................................................................................ 110 4.10 Third test: Threshold and Noise Occupancy Scan without the decoupling capacitors on AVDD ....... 110 4.10.1 Test procedure ............................................................................................................................ 110 4.10.2 Experimental results .................................................................................................................... 111 4.10.3 Third test conclusions .................................................................................................................. 113 4.11 Fourth test: Threshold and Noise Occupancy Scan without the filter on VREF ................................ 113 4.11.1 Test procedure ............................................................................................................................ 113 4.11.2 Experimental results .................................................................................................................... 114 4.11.3 Fourth test conclusions ............................................................................................................... 116 Chapter 5: Study of the chip response as a function of noise injection....................................................... 117 5.1 Noise injection into pALPIDEfs-v1 ........................................................................................................ 117 5.1.1 Test objective ................................................................................................................................ 117 5.1.2 Experimental setup and test procedure ........................................................................................ 117 5.1.3 Experimental results: injection in the power planes (AVDD and DVDD) ...................................... 118 5.1.4 Experimental results: injection in the PWELL (back-bias) ............................................................. 121 5.2 Noise injection into pALPIDEfs-v2 ........................................................................................................ 126 5.2.1 Comparison between ALPIDE-v1 and -v2 ...................................................................................... 126 5.2.2 Experimental results: injection in the power planes (AVDD and DVDD) ...................................... 127 5.2.3 Experimental results: injection in the PWELL (back-bias) ............................................................. 130 Conclusions .................................................................................................................................................... 134 Future plans .................................................................................................................................................. 135 Ringraziamenti ............................................................................................................................................... 136 Bibliography ................................................................................................................................................... 137 5 6 Introduction ALICE (A Large Ion Collider Experiment) is designed to address the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC. So the purpose is to study the nuclear matter at high densities and temperatures. One of the major goals of the ALICE physics program is the study of rare probes at low transverse momentum. The reconstruction of the rare probes require a precise determination of the primary and secondary vertices that is performed by the ALICE ITS (Inner Tracking System). The present ITS is made of six layers of different types of silicon detectors and it allows, for example, to reconstruct D mesons with the transverse momentum down to ~ 1 ๐บ๐๐/๐. The nature of the QGP as an almost-perfect liquid emerged from the experimental investigations at CERN SPS and at BNL RHIC. ALICE has confirmed this basic picture, observing the formation of hot hadronic matter at unprecedented values of temperatures, densities and volumes. These physics results have been achieved by ALICE after only two years of Pb-Pb running and one p-Pb run, demonstrating its excellent capabilities to measure high-energy nuclear collisions at the LHC. Despite these successes there are several limitations for which the current experimental setup is not yet fully optimized. ALICE is therefore preparing a major upgrade of its apparatus, panned for installation during the Long Shutdown 2 (LS2) of LHC in the years 2018-2019. The upgraded detector will have greatly improved features in terms of impact parameter resolution, standalone tracking efficiency at low ๐ , momentum resolution and readout capabilities. So this ๐ upgrade will enhance ALICE physics capabilities, in particular for high precision measurements of rare probes at low transverse momenta. In this thesis, I will briefly describe the overall upgrade program and I will focus my attention on the ITS upgrade. In the first part I will present some important physics concepts regarding the heavy ion collisions and then the new structures (circuitry, support structures, โฆ) and detectors that will take place in the new ITS will be presented. Finally, I will present the measurements regarding the new electrical circuits of the ITS and the chip prototypes that will replace the silicon detectors of the current ITS. 7 8 Chapter 1: Heavy ion collisions physics 1.1 The Quantum Chromodynamics The Quantum Chromo-Dynamics (QCD) is the gauge field theory which describes the features of the interaction between the quarks and gluons found in hadrons in the Standard Model. This gauge theory is based on the symmetry group SU(3), that is a non-abelian group. In the lagrangian of this theory, we can find a term of interaction quarks-gluon and gluon-gluon (3 or 4); fig. 1 depicts the correspondent vertexes: Figure 1: QCD interaction vertexes. the last two vertexes are typical of a non-abelian theory. In the figure above โ is the coupling ๐ constant of the QCD. But, it is more common to find ๐ผ = โ2/4๐. ๐ ๐ 1.2 Running coupling constant in QED and QCD In Quantum Electro-Dynamics (QED) the coupling constant is called ๐ผ = โ2/4๐. In this case, the vacuum is a sort of a dielectric: virtual pairs ๐+๐โ (vacuum polarization) screen the charge of an electron, hence the charge depends on the distance. In fig.2 a test particle sees different charges of the electron in the middle depending on the distance R (screening). Figure 2: Vacuum polarization in QED 9 So, considering that ๐ผ depends on the charge of the electron (~๐2), the previous consideration brings to what we call โrunning coupling constantโ. In fact in fig. 3 we note that ๐ผ decreases with the distance. Figure 3: From vacuum polarization to running coupling constant Considering the Heisenberg indetermination principle, high energies correspond to low distance and vice versa. Hence, the coupling constant ๐ผ increases with the energy or ๐2 that is the transferred momentum. Also in QCD we have the vacuum polarization, but there is an important difference: the gluons are colored and can interact with each other (photons canโt do this). Then, if we consider for instance a red charge, it will be rounded by other red charges and a probe entering in this region sees less red charge approaching to the red charge in the middle. Fig. 4 depicts this phenomenon. This effect is called anti-screening. Figure 4: Vacuum polarization in QCD Considering that ๐ผ depends on the color charge, we have an opposite trend with respect to ๐ผ in ๐ QED (fig. 5). 10
Description: