DEVELOPMENT OF METHODS TO QUANTIFY BITUMEN-AGGREGATE ADHESION AND LOSS OF ADHESION DUE TO WATER A Dissertation by AMIT BHASIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2006 Major Subject: Civil Engineering DEVELOPMENT OF METHODS TO QUANTIFY BITUMEN-AGGREGATE ADHESION AND LOSS OF ADHESION DUE TO WATER A Dissertation by AMIT BHASIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Dallas N. Little Committee Members, Robert L. Lytton Eyad Masad Hung J. Sue Bruce E. Herbert Head of Department, David V. Rosowsky May 2006 Major Subject: Civil Engineering iii ABSTRACT Development of Methods to Quantify Bitumen-Aggregate Adhesion and Loss of Adhesion Due to Water. (May 2006) Amit Bhasin, B.Tech., Institute of Technology, India; M.Eng., Texas A&M University Chair of Advisory Committee: Dr. Dallas N. Little Moisture induced damage of hot mix asphalt pavements has a significant economic impact in terms of excessive maintenance and rehabilitation costs. The moisture sensitivity of an asphalt mix depends on the combined effects of material properties, mixture design parameters, loading conditions and environmental factors. Traditional methods to assess moisture sensitivity of asphalt mixes rely on mechanical tests that evaluate the mix as a whole. These methods do not measure material properties and their role in moisture sensitivity of the mix independently. This information is very important to select materials resistant to moisture induced damage, or to modify locally available materials to improve their resistance to moisture damage for economic reasons. The objective of this research is to develop experimental and analytical tools to characterize important material properties that influence the moisture sensitivity of asphalt mixes. Quality of adhesion between the aggregate and bitumen binder in wet and dry conditions plays an important role on the moisture sensitivity of the asphalt mix. A part of this research work was to develop the Wilhelmy plate method and the Universal Sorption Device to measure the surface free energy components of the bitumen and aggregate with adequate precision and accuracy, respectively. Surface energy of these materials was used to identify parameters based on thermodynamics that can quantify their interfacial adhesion and propensity to debond in the presence of water. The thermodynamic parameters were shown to correlate well with the moisture sensitivity of asphalt mixes determined from laboratory tests. Specific surface areas of the aggregates were also used to account for the influence of mechanical interlocking at the micro scale. In some mixes, chemical bonding also contributes to the adhesion between bitumen and iv aggregate. The use of a micro calorimeter was introduced in this research as a versatile and fast tool to quantify the combined effects of physical and chemical adhesion between these materials. v DEDICATION To all those who pursue knowledge for the betterment of society. vi ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Dallas N. Little, my committee chair for providing me with the opportunity and invaluable support to conduct this research. What I have learned working under his guidance far exceeds the research that is documented in this dissertation. I wish to acknowledge the National Cooperative Highway Research Program (NCHRP) which has provided the necessary financial support for a major part of this research, and the Texas Transportation Institute (TTI) where this research was conducted. Thanks to my graduate committee members, Dr. Robert Lytton, Dr. H. J. Sue, Dr. Eyad Masad, and Dr. Bruce Herbert for their support and valuable insights. I would also like to thank Mr. Joe Button and Mr. Arif Chowdhary for their support and encouragement. I appreciate the support of my colleagues, Dr. Arno Hefer, Mr. Corey Zollinger, Mr. Jonathan Howson, and Ms. Kamilla Vasconcellos, who were directly involved in various stages of this research, Mr. Syam Nair, and Ms. Veronica Castelo Branco, with whom I have shared several intriguing academic conversations, and Ms. Barbara Hein who has extended the necessary administrative support for executing this research project. I acknowledge the support and encouragement of my parents, Mr. Satish and Mrs. Neera, who provided me with the necessary moral and vital financial support from time to time. Finally, I wish to acknowledge the support and encouragement of my wife, Reema, who inspired me to pursue this path and stood by me through all its rough and smooth patches. vii TABLE OF CONTENTS Page ABSTRACT.......................................................................................................................iii DEDICATION....................................................................................................................v ACKNOWLEDGEMENTS...............................................................................................vi LIST OF FIGURES...........................................................................................................ix LIST OF TABLES.............................................................................................................xi CHAPTER I INTRODUCTION.......................................................................................1 Overview.........................................................................................1 Objective and Scope of Study.........................................................3 Outline of the Dissertation .............................................................4 II LITERATURE REVIEW............................................................................6 Moisture Sensitivity of Asphalt Mixes...........................................6 Mixture Response and Empirical Tests to Assess Moisture Sensitivity.......................................................................................8 Principles of Physical Adhesion Related to Surface Free Energy.............................................................................................9 Material Property Tests to Assess Moisture Sensitivity...............16 Problem Statement........................................................................17 III WILHELMY PLATE METHOD.............................................................19 Problem Description.....................................................................19 Background and Theory................................................................19 Development of Test Method.......................................................22 Calculating Surface Free Energy Components.............................26 Results...........................................................................................27 Summary.......................................................................................34 viii CHAPTER Page IV UNIVERSAL SORPTION DEVICE......................................................36 Problem Description.....................................................................36 Background and Theory................................................................37 Development of Test Method.......................................................39 Experimental Variables.................................................................44 Test Results...................................................................................47 Summary.......................................................................................54 V SURFACE FREE ENERGY AND MOISTURE SENSITIVITY OF ASPHALT MIXES...................................................................................55 General..........................................................................................55 Bond Energy Parameters Related to Moisture Sensitivity............56 Moisture Sensitivity Based on Laboratory Performance of Mixes........................................................................................61 Comparison of Field Performance of Mixes.................................74 Materials and Moisture Sensitivity...............................................75 Results...........................................................................................79 Discussion.....................................................................................82 VI APPLICATIONS OF CALORIMETER..................................................83 General..........................................................................................83 Surface Free Energy of Aggregates..............................................84 Hydrophilcity of Aggregates........................................................93 Total Energy of Adhesion Between Aggregates and Bitumen.....96 VII CONCLUSIONS AND RECOMMENDATIONS..................................102 General........................................................................................102 Conclusions and Discussion.......................................................104 Recommendations for Future Work...........................................107 REFERENCES...............................................................................................................108 APPENDIX A.................................................................................................................116 APPENDIX B.................................................................................................................135 APPENDIX C.................................................................................................................143 VITA...............................................................................................................................146 ix LIST OF FIGURES FIGURE Page 2.1. Adhesive Failure Between Two Materials ‘A’ and ‘B’............................11 2.2. Displacement of Bitumen from Bitumen-Aggregate Interface by Water.........................................................................................................12 3.1. Schematic of a Wilhelmy Plate Device....................................................21 3.2. Hysterisis in Advancing and Receding Force Measurements...................22 3.3. LW Component of Bitumen Surface Free Energy....................................33 3.4. Acid Component of Bitumen Surface Free Energy..................................34 4.1. Flow Chart of Steps to Determine Aggregate Surface Free Energy.........39 4.2. Layout of Universal Sorption Device System..........................................41 4.3. Snapshot of SEMS Software Used for Sorption Measurement................42 4.4. Evaluation of Preconditioning Time.........................................................47 4.5. Typical Report Generated Using SEMS Software....................................49 4.6. LW Component of Aggregates.................................................................50 4.7. Acid Component of Aggregate.................................................................51 4.8. Base Component of Aggregate.................................................................51 5.1. Aggregate Gradation for All Mixes..........................................................64 5.2. Typical Loading and Average Response from Dynamic Creep Test Without Rest Period..................................................................................66 5.3. Curve Showing Accumulated Permanent Strain Versus Load Cycles.....67 5.4. Reduction in Modulus from Dynamic Creep Test....................................67 5.5. Test Set Up and Sample Failure for Dynamic Creep Test (Tension).......68 5.6. Failure Plane of Moisture Conditioned Sample After Dynamic Creep Test.................................................................................69 5.7. ER vs. Wet to Dry Ratio of Fatigue Life.................................................70 1 5.8. ER vs. Wet to Dry Ratio of Resilient Modulus in Tension.....................70 1 5.9. ER xSSA vs. Wet to Dry Ratio of Fatigue Life........................................71 1 5.10. ER xSSAvs. Wet to Dry Ratio of Resilient Modulus in Tension.............71 1 5.11. ER vs. Wet to Dry Ratio of Fatigue Life.................................................72 2 5.12. ER vs. Wet to Dry Ratio of Resilient Modulus in Tension.....................72 2 x FIGURE Page 5.13. ER xSQRT(SSA) vs. Wet to Dry Ratio of Fatigue Life...........................73 2 5.14. ER xSQRT(SSA) vs. Wet to Dry Ratio of Resilient Modulus in 2 Tension......................................................................................................73 5.15. ER vs. Field Evaluation of Moisture Sensitivity.....................................80 1 5.16. ER vs. Field Evaluation of Moisture Sensitivity.....................................80 2 5.17. SSAxER vs. Field Evaluation of Moisture Sensitivity............................81 1 5.18. SQRT(SSA)xER vs. Field Evaluation of Moisture Sensitivity...............81 2 6.1. Schematic Layout of the Micro Calorimeter............................................86 6.2. Comparison of the LW Component of Surface Free Energy....................90 6.3. Comparison of the Acid Component of Surface Free Energy..................90 6.4. Comparison of the Base Component of Surface Free Energy..................91 6.5. Comparison of Dry Adhesive Bond Strength between USD and Micro Calorimeter.....................................................................................92 6.6. Comparison of Wet Adhesive Bond Strength between USD and Micro Calorimeter.....................................................................................92 6.7 Hydrophilicity of Aggregates from USD vs. Micro calorimeter..............95 6.8. Reaction Vial to Conduct Immersion Experiments at High Temperatures with Micro calorimeter......................................................98 6.9. Measured Total Energy of Adhesion vs. Work of Physical Adhesion for AAB....................................................................................................99 6.10. Measured Total Energy of Adhesion vs. Work of Physical Adhesion for ABD....................................................................................................99 A.1. Differences in intermolecular forces of surface molecules versus bulk molecules........................................................................................116 A.2. Contact Angle of Liquid on a Solid Surface...........................................120 A.3. Schematic for the sessile drop method....................................................131 A.4. Retention time versus liquid properties [74]...........................................134 A.5. Typical retention times from the chemstation software [74]..................134 B.1. Demonstration of Effect of Choice of Probes on Calculated Values......138
Description: