ebook img

Development of high efficiency solar absorbers PDF

229 Pages·2014·25.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of high efficiency solar absorbers

ANABSTRACTOFTHETHESISOF RamRavichandran forthedegreeofDoctorofPhilosophyin ElectricalandComputerEngineeringpresentedonMay22,2014. Title: DevelopmentofHighEfficiencySolarAbsorbers. Abstractapproved: JohnF.Wager Current cadmium telluride and copper indium gallium diselenide thin-film solar cells (TFSCs) utilize thick absorbers (2 - 4 µm). For efficient carrier extraction in these TFSCs, theabsorberlayerrequireshighcarriermobilitiesandalongminoritycarrierlifetime,which necessitates the use of a high purity, defect-free thin film. Developing new materials with absorption strengths stronger than those of current materials allows an ultra-thin (<1 µm) absorbertobeincorporatedinadrift-basedTFSC.Devicesimulationindicatesthatabuilt-in driftfieldaidscarrierextraction,reducingmobilityandlifetimerequirements. Iron- and copper-based materials are investigated within the context of ultra-thin ab- sorbers. FeS is unstable due to the formation of deleterious, low band-gap phases while 2 Fe GeS and CuSbS exhibit a sluggish, non-abrupt onset of absorption, limiting their ap- 2 4 2 plicationinanultra-thindrift-basedTFSC.Cu SbS exhibitsdesirableopticalandelectrical 3 4 properties with a simulated TSFC efficiency of 19% for a 750 nm thick absorber layer. A newtetrahedrite-basedabsorber,Cu Zn Sb Se demonstratesexceptionallystrongabsorp- 10 2 4 13 tion, with a simulated TSFC efficiency of 21% for a 250 nm thick absorber, indicating that Cu SbS and Cu Zn Sb Se have potential for high efficiency drift-based TFSC applica- 3 4 10 2 4 13 tions. (cid:13)cCopyrightbyRamRavichandran May22,2014 Allrightsreserved DevelopmentofHighEfficiencySolarAbsorbers by RamRavichandran ATHESIS submittedto OregonStateUniversity inpartialfulfillmentof therequirementsforthe degreeof DoctorofPhilosophy PresentedMay22,2014 CommencementJune2014 DoctorofPhilosophythesisofRamRavichandranpresentedonMay22,2014 APPROVED: MajorProfessor,representingElectricalandComputerEngineering DirectoroftheSchoolofElectricalEngineeringandComputerScience DeanoftheGraduateSchool I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. RamRavichandran,Author ACKNOWLEDGMENTS Theworkpresentedhereinwouldnothavebeenpossiblewithoutthesupportandmo- tivationofmyadvisors,Dr. JohnWagerandDr. DougKeszler. IowethankstoDr. TomPlant for guiding me towards my graduate career, and my committee members, Dr. Ted Brekken andDr. BillWarnes. I cannot thank my family enough for all the help and support over the years. Thank youforbeingthere,ateverystepofallmyendeavors,sharingmysuccessesandhelpingme overcomemyfearsandfailures. I am very thankful to Chris Tasker, Rick Presley, and Manfred Dittirich who help maintain the cleanroom, and provide a learning environment even for those who are not mechanically inclined! The absorber group, including Dr. Robert Kokenyesi, Dr. Jaeseok Heo,Dr. BrianPelatt,andGregAngelos,hasbeencrucialtotheworkpresentedherein. I’m lookingforwardtoourcontinuedfriendship. I owe thanks to many people in Corvallis who have helped me make OSU home, especially Dr. William Cowell, Ira Jewell, John McGlone, and Pratim Chowdhury. Thanks forbeingpartnersincrimeandgivingmereasonstostepawayfromthelab. Dr. JaeseokHeo andDr. LipingYucontributedtothetheoreticalcalculationspresentedinthiswork. ThisworkwasfundedbytheU.S.DepartmentofEnergy,OfficeofScience,Officeof BasicEnergySciencesunderContractNo. DE-AC36-08GO28308toNREL. TABLEOFCONTENTS Page 1. MOTIVATION-APATHWAYTOWARDSSUSTAINABLESOLARENERGY 1 2. SUNLIGHT,SOLARABSORBERS,ANDSOLARCELLS .................. 3 2.1 SunlightandSemiconductors......................................... 3 2.1.1 SolarSpectrum ................................................. 3 2.1.2 AbsorptioninSemiconductors................................... 5 2.1.3 Recombination.................................................. 15 2.2 SolarCellDevicePrimer............................................. 20 2.2.1 SolarCellDeviceConfigurations ................................ 21 2.2.2 Current-VoltageCharacteristicsofTFSCs ........................ 24 2.2.3 EfficiencyLimitsforaSingle-JunctionSolarCell................. 32 2.3 Thin-FilmAbsorberMaterials........................................ 35 2.3.1 CadmiumTelluride-CdTe ...................................... 35 2.3.2 Cu(In,Ga)Se -CIGS............................................ 40 2 2.3.3 AmorphousSilicon.............................................. 45 2.3.4 IronPyrite-FeS ............................................... 49 2 2.4 Summary........................................................... 52 3. EXPERIMENTALTECHNIQUES ......................................... 53 3.1 ThinFilmFabrication................................................ 53 3.1.1 RFMagnetronSputtering........................................ 53 3.1.2 ElectronBeamEvaporation...................................... 57 3.1.3 Post-DepositionAnneal ......................................... 61 3.2 MaterialCharacterization............................................ 62 3.2.1 SpectroscopicEllipsometry...................................... 63 3.2.2 OpticalSpectroscopy............................................ 68 3.2.3 HallEffectMeasurements ....................................... 70 3.2.4 SeebeckMeasurements.......................................... 71 3.3 DeviceSimulations.................................................. 74 3.4 Conclusions ........................................................ 76 TABLEOFCONTENTS(Continued) Page 4. TFSCDEVICESIMULATIONOFHIGHABSORPTIONMATERIALS ....... 80 4.1 Primaryquestionsaddressedbydevicesimulations..................... 80 4.2 TheAbsorber....................................................... 81 4.3 TFSCDeviceConfiguration.......................................... 83 4.4 Carrierconcentrationvariation........................................ 86 4.5 Absorberlayerthicknessvariation .................................... 88 4.5.1 Drift-basedTFSCs .............................................. 88 4.5.2 Diffusion-basedTFSCs.......................................... 93 4.6 Minoritycarrierlifetime ............................................. 98 4.6.1 Drift-basedTFSCs .............................................. 100 4.6.2 Diffusion-basedTFSCs.......................................... 105 4.7 Conclusions ........................................................ 111 5. IRONBASEDSOLARABSORBERS ...................................... 113 5.1 FeS -Pyrite........................................................ 113 2 5.2 Fe GeS -BasedAbsorbers ........................................... 121 2 4 5.2.1 FGSThinFilmSynthesisandCharacterization ................... 122 5.2.2 DeviceSimulationsofFGS-basedTFSCs ........................ 132 5.3 Conclusions ........................................................ 142 6. COPPER-BASEDSOLARABSORBERS ................................... 144 6.1 Cu-V-VI(V=Sb,Bi;VI=S,Se)familyofmaterials................... 144 6.1.1 DesignparadigmsforCu-V-VImaterials ......................... 145 6.1.2 Thin-filmdepositionandcharacterization ........................ 147 6.1.3 TFSCdevicesimulations ........................................ 154 6.1.3.1 CuSbS ................................................. 155 2 TABLEOFCONTENTS(Continued) Page 6.1.3.2 Cu SbS ................................................ 165 3 4 6.2 Tetrahedrites-Cu M Sb Ch (M=Cu,Mn,Zn,Al,In;Ch=S,Se).... 170 10 2 4 13 6.2.1 FabricationandcharacterizationofCu Sb S thinfilms ......... 175 12 4 13 6.2.2 ReducingthecarrierconcentrationinCu Sb S ................. 178 12 4 13 6.2.3 BandgaptuninginCu Zn Sb S .............................. 182 10 2 4 13 6.2.4 Cu Zn Sb Se asaTFSCabsorberlayer ....................... 185 10 2 4 13 6.3 Conclusions ........................................................ 193 7. CONCLUSIONSANDRECOMMENDATIONSFORFUTUREWORK ....... 195 7.1 Conclusions ........................................................ 195 7.1.1 TFSCdevicesimulations ........................................ 195 7.1.2 Iron-basedabsorbers ............................................ 196 7.1.3 Copper-basedabsorbers ......................................... 197 7.2 Recommendationsforfuturework.................................... 199 7.2.1 TFSCDeviceSimulation ........................................ 199 7.2.2 Fe-basedabsorbers.............................................. 199 7.2.3 Cu-V-VIbasedabsorbers ........................................ 199 7.2.4 Tetrahedrite-basedabsorbers..................................... 200 7.2.5 V estimationfromphotoluminescencemeasurements........... 200 OC BIBLIOGRAPHY ............................................................ 202 LISTOFFIGURES Figure Page 2.1 The spectral power density of sunlight outside the atmosphere (AM0), at theEarth’ssurface(AM1.5),andablackbodyradiationat5800K.......... 4 2.2 (a)Absorptionofabove-bandgaplightinasemiconductorresultsinapho- togeneratedelectron-holepairduetointerbandtransitions. (b)Relaxation oftheexcitedelectronresultsintheemissionoflightwithenergyequalto thebandgap............................................................. 5 2.3 Density of states trends for s-, p-, and d-orbital derived bands, specifying themaximumelectronicoccupancyandexpectedeffectivemasstrendsfor eachband. .............................................................. 8 2.4 (a) k-space representation of an energy band diagram for a direct band gapmaterial,and(b)absorptioncoefficientofCdTe. Adirectbandgapis characterizedbyastrongonsetofabsorptionjustabovethebandgap....... 11 2.5 (a) Reciprocal space representation of an energy band diagram for an in- direct band gap material, and (b) absorption coefficient of silicon. An indirectbandgapmaterialischaracterizedbyanon-abrupt,gradualonset ofabsorptionabovethebandgap......................................... 12 2.6 Estimationofthe(a)indirectbandgap,and(b)directbandgapofsilicon. An indirect band gap of Eindr ∼ 1.1 eV can be extracted, while a direct G bandgapEdr ∼3.3eVisalsoobserved................................... 13 G 2.7 Absorption coefficient versus photon energy for a Cu Mn Sb S and a 10 2 4 13 Cu Sb S thin film which have a band gap, E ∼ 1.8 eV. However, an 12 4 13 G additionalabsorptionfeaturecanbeseenintheCu Mn Sb S thin-film 10 2 4 13 at E ∼ 1.6 eV, indicating the presence of an additional sub-band gap sb phase in the thin-film. Cu Sb S , on the other hand does not exhibit 12 4 13 sub-band gap phases, but has a characteristic feature below the band gap indicatingfree-carrierabsorption. ........................................ 14 2.8 Recombination mechanisms in a semiconductor. (a) Radiative recombi- nation, accompanied with the emission of a photon with energy equal to the band-gap. (b) SRH, or trap-mediated recombination, and (c) Auger recombination........................................................... 16 2.9 (a) Electron capture by an ionized donor trap in a p-type semiconductor, and(b)holecapturebyanionizedacceptortrapinann-typesemiconductor. 19 2.10 DeviceconfigurationsforaTFSC.P-njunction(diffusioncell)at(a)equi- librium, (b) under illumination, (c) and illumination with a forward bias. P-i-njunction(driftcell)at(d)equilibrium,(e)underillumination,and(f) illuminationwithaforwardbias.......................................... 22

Description:
I understand that my thesis will become part of the permanent collection of Oregon State. University libraries. My signature below authorizes release of my thesis to any . 3.1.1 RF Magnetron Sputtering . in a direct band gap material is a two-particle interaction (photon - electron) and a key feat
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.