ebook img

development of diagnostic tools to predict incidence of bitter pit during apple storage mehrdad ... PDF

252 Pages·2015·4.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview development of diagnostic tools to predict incidence of bitter pit during apple storage mehrdad ...

DEVELOPMENT OF DIAGNOSTIC TOOLS TO PREDICT INCIDENCE OF BITTER PIT DURING APPLE STORAGE MEHRDAD MIRZAEE A thesis submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy This research programme was carried out in collaboration with Landseer Ltd. August 2015 ACKNOWLEDGEMENTS My grateful thanks to everyone who helped me during this study, especially my supervisors, Dr. Richard Colgan and Dr. Deborah Rees, for their kind instructions and valuable guidance during this research. Also my grateful thanks to Mr. Mark Tully (Landseer Ltd.) for all his support and collaborating in this project. My appreciation to all members of staff at Landseer Ltd. especially Mrs. Tracey Tully, Mr. Tony De Fraine and Mr. Colin Carter who helped me during collecting and assessments of samples. Also especial thanks to all apple growers in Kent who participated in this project for their kind cooperation during collecting and monitoring samples over storage time. I would like to thank all NRI staff and their support especially laboratory technicians and Mr. Dudley Farman for their help in different areas in molecular and chemistry laboratories. Also I would like to thank Prof. Atkinson for his kind instructions and advice. My especial thanks goes to Mr. Stephen Young for all his help, support and kind instructions in statistics and analysis of data. My grateful thanks to Dr. Nazanin Zand and her colleagues at laboratories of School of Science (University of Greenwich) for all their help and support for providing services for mineral analysis. I would like to thank all East Malling Research members of staff who helped me during this project, especially Mrs. Karen Thurston for all her help and support during storage and monitoring samples at PQC. My grateful thanks to AgroFresh and Hansatech Instruments for providing equipment during this project. Finally my deepest thanks to my family who encouraged and supported me throughout my years of study. ii ABSTRACT Bitter pit is an important physiological disorder of many apple cultivars where the low uptake and poor distribution of calcium within the cortex of apples pervades. Controlled atmosphere storage and application of 1-MCP (SmartFreshSM) can delay the onset of bitter pit symptoms by delaying maturity and senescence; however, significant losses may occur in long-term stored apples. It is hard to detect internal bitter pit using external examination alone. Previous studies have focused on improving pre-harvest prediction and curative treatments before harvest. Present prediction models are based on history of orchards, mineral analysis 2- 3 weeks before harvest and quality assessments and monitoring over storage time. This study aimed to identify a greater understanding of the storage potential of fruit based on destructive standard quality assessments, biochemical and molecular analysis, also a non- destructive monitoring method by chlorophyll fluorescence at the point of harvest and monitoring during storage for developing more reliable prediction models to improve storage management. The role of free and conjugated calcium in maintaining cellular integrity and the relationship between biochemical and fluorescence changes and development of bitter pit were investigated. A diagnostic model based on comparison of changes of ascorbic acid during storage was developed. Another diagnostic model based on changes in the proportion of calcium oxalate content during storage in comparison with harvest was developed to identify samples with higher propensity to bitter pit. Also chlorophyll fluorescence was investigated as a non- destructive method for monitoring fruit during storage and prediction models for detecting changes in the maturity of fruit and developing bitter pit and reduction of fluorescence during storage as an alert to identify incidence of bitter pit were developed. Furthermore, changes in gene expression profiles of a limited number of genes like calmodulin showed the differences in patterns of transcripts between apples suffering from bitter pit and healthy apples. All the suggested methods have potential of being commercialised and applied practically to improve apple fruit store management. It would be possible to build a multi variate model for predicting the onset of bitter pit development in apple by combination of two or more suggested diagnostic tools. iii CONTENTS ACKNOWLEDGEMENTS ....................................................................................................... ii  ABSTRACT .............................................................................................................................. iii  CONTENTS .............................................................................................................................. iv  ABBREVIATIONS ................................................................................................................... ix  CHAPTER 1 .......................................................................................................................... 1  INTRODUCTION ...................................................................................................................... 1  1.1 Apple cultivars and history: ............................................................................................. 3  1.1.1 Bramley’s Seedling: .................................................................................................. 3  1.1.2. Cox's Orange Pippin: ................................................................................................ 4  1.2 Anatomy of apple fruit: .................................................................................................... 4  1.3 Physiological disorders of apple: ..................................................................................... 6  1.3.1 Bitter pit: ................................................................................................................... 6  1.4 General physiology of fruit ripening: .............................................................................. 9  1.4.1 Ethylene biosynthesis: ............................................................................................. 10  1.4.2 Role of ethylene and other factors in fruit ripening: ............................................... 12  1.4.3 Methods to control ethylene biosynthesis and perception: ..................................... 13  1.4.4 The use of controlled atmosphere to extend the storage life of fruit: ..................... 16  1.5 Pre-harvest and climate factors: ..................................................................................... 17  1.5.1 Rootstock: ............................................................................................................... 18  1.5.2 Orchard management, cropping level and fruit size: .............................................. 19  1.5.3 Weather and environmental effects: ........................................................................ 20  1.5.4 Harvest date: ............................................................................................................ 21  1.6 Calcium: ......................................................................................................................... 21  1.6.1 Balance of calcium and other nutrients: .................................................................. 25  1.7 Methods for Predicting Bitter Pit: .................................................................................. 26  1.7.1 Nutritional Status Methods: .................................................................................... 27  iv 1.7.2 Maturity Acceleration Methods: ............................................................................. 27  1.7.3 Mg infiltration: ........................................................................................................ 27  1.7.4 Vegetative Growth Methods: .................................................................................. 27  1.9 Molecular diagnostics and transcriptomic analysis: ...................................................... 32  CHAPTER 2 ........................................................................................................................ 41  MATERIALS AND METHODS ............................................................................................. 41  2.1 Sample collection: .......................................................................................................... 41  2.2 Fruit quality assessments: .............................................................................................. 48  2.2.1 Ethylene measurement: ........................................................................................... 48  2.2.3 Background colour: ................................................................................................. 49  2.2.4 Total soluble solids (%Brix): .................................................................................. 49  2.3 Analysis of minerals, organic acids and sugars: ............................................................ 50  2.4 Chlorophyll fluorescence: .............................................................................................. 52  2.5 Transcriptomic analysis of genes regulating calcium homeostasis: .............................. 53  2.5.1 RNA extraction (method 1): .................................................................................... 54  2.5.2 RNA extraction (method 2): .................................................................................... 55  2.5.3 RNA extraction (method 3): .................................................................................... 55  2.5.3.1 RNA extraction (method 3-stage 1): .................................................................... 56  2.5.3.2 Final RNA extraction (method 3-stage 2): ........................................................... 56  2.5.3 Quantification of RNA: ........................................................................................... 57  2.5.4 Qualification of RNA by gel electrophoresis: ......................................................... 58  2.5.5 cDNA library: .......................................................................................................... 58  2.5.6 Primers: ................................................................................................................... 59  2.5.7 Real Time PCR (qPCR): ......................................................................................... 60  2.6 Statistics and experimental design:..................................................................................... 61  CHAPTER 3 ............................................................................................................................. 62  FRUIT QUALITY ASSESSMENTS ....................................................................................... 62  v 3.1. Introduction: ...................................................................................................................... 62  3.2. The effect of the days taken to load stores, storage regimes, length of storage and the effect of SmartFreshSM on incidence of bitter pit: .............................................................................. 62  3.3. Picking date and storage regimes: ..................................................................................... 64  3.4. Fruit firmness (N): ............................................................................................................. 67  3.5 Background colour: ............................................................................................................ 70  3.6 Total soluble solids (%Brix): .............................................................................................. 72  3.7. Fruit size: ........................................................................................................................... 73  3. 8. Discussion: ....................................................................................................................... 74  CHAPTER 4 ............................................................................................................................. 82  METABOLIC CHANGES IN BRAMLEY APPLE DURING STORAGE ............................ 82  4.1 Introduction: ....................................................................................................................... 82  4.2 Organic acids and sugars: ................................................................................................... 82  4.2.1 Relationship between incidence of bitter pit and organic acids: ..................................... 94  4.2.2 Relationship between incidence of bitter pit and sugars: .............................................. 100  4.3 Mineral analysis: .............................................................................................................. 100  4.4 Discussion ......................................................................................................................... 121  CHAPTER 5 ........................................................................................................................... 131  CHLOROPHYLL FLUORESCENCE ................................................................................... 131  5.1 Introduction: ..................................................................................................................... 131  5.2 Determination of the best characteristics correlated to bitter pit: ..................................... 131  5.3 Determination of the threshold of ((cid:2162)(cid:4667) for incidence of bitter pit: .................................... 136  5.4 Changes of chlorophyll fluorescence in different seasons: .............................................. 138  5.5 Final determination of threshold for incidence of bitter pit: ............................................ 139  5.6 Discussion ......................................................................................................................... 145  CHAPTER 6 ........................................................................................................................... 150  MOLECULAR ANALYSIS .................................................................................................. 150  vi 6.1 Introduction: ..................................................................................................................... 150  6.3 Expression of Ca-ATPase and Lipoxygenase genes: ....................................................... 152  6.4 Analysis of calmodulin expression in apple: .................................................................... 154  6.5 Real Time quantitative PCR: ............................................................................................ 157  6.6 Discussion ......................................................................................................................... 166  CHAPTER 7 ........................................................................................................................... 170  CONCLUSIONS AND FUTURE WORK ............................................................................. 170  7.1 Preharvest factors, storage conditions and quality assessments during storage: .............. 170  7.2 Biochemical analysis: ...................................................................................................... 172  7.3 Chlorophyll fluorescence: ............................................................................................... 176  7.4 Molecular diagnostics: ...................................................................................................... 179  7.5 Overall Conclusions ......................................................................................................... 181  REFERENCES ....................................................................................................................... 182  APPENDICES ........................................................................................................................ 200  Appendix I: Final list of frozen samples in 2010/11 which were used for chemical and molecular analysis (88 samples). ............................................................................................ 200  Appendix II: Final list of frozen samples in 2011/12 which were used for chemical and molecular analysis (96 samples). ............................................................................................ 203  Appendix III: Final list of frozen samples in 2011/12 which were collected from two orchards (EMR-EE193) and (HOO-Top) for comparing picking dates and air stored (4-4.5°C). ........ 206  Appendix IV: Final list of frozen samples in 2012/13 which were collected from 4 orchards (EMR-EE193), (HOO-Top), (CAR) and (NEW) at the same time and air-stored in air regime (4-4.5°C). ................................................................................................................................ 208  Appendix V (a): Comparison of temperature changes in spring (March, April and May) 2010 to 2013: A) 2010, B) 2011, C) 2012 and D) 2013. (Source: Met Office, 2015) .................... 212  Appendix VI (a): Organic acid and sugars content of samples in (2011/12) air stored. ....... 214  Appendix VI (b): Organic acid content of samples in (2012/13) CA storage (9%CO , 12%O ) 2 2 and (5%CO2, 1%O2). .............................................................................................................. 215  vii Appendix VI (c): Organic acids content of samples collected from 2 orchards (EMR) and (Hoo) in (2013/14) air stored for 3 months. ...................................................................................... 216  Appendix VII: Multiple regression analysis for the influence of mineral constituents Ca2+, P, N, K, Mg, B, Zn on the incidence of bitter pit of selected samples. ...................................... 218  Appendix VIII (a): List of samples in 2011-12 air stored which were used for mineral analysis (30 samples). ........................................................................................................................... 219  Appendix VIII (b): List of samples in 2011-12 air stored which were used for mineral analysis (30 samples). ........................................................................................................................... 220  Appendix IX: Multiple regression analysis for the influence of mineral constituents Ca2+ total, Ca2+ oxalate, Mg, K and B on the incidence of bitter pit of selected samples and incidence of bitter pit. ................................................................................................................................. 222  Appendix X: The study on chlorophyll flurescence and the results of season 2012/13 were presented at “V International postharvest unlimited conference” and published in Acta Horticulture vol. 1079 (2015) p: 235-242 .............................................................................. 223  Appendix XI (a): Results of CT value for housekeeping primer (ITS) and primer “Calmodulin b” ............................................................................................................................................ 235  viii ABBREVIATIONS μL microlitre µL L-1 microlitre per litre μmol micromoles μE m−2 s−1 microeinsteins per square meter per second 1-MCP 1-Methylcyclopropene 2-MCE 2-mercaptoethanol AA Ascorbic Acid AAS Atomic Absorption Spectroscopy ABA Abscisic Acid ACC 1-aminocyclopropane-1-carboxylic acid ACO 1-aminocyclopropane-1-carboxylic acid oxidase ACS 1-aminocyclopropane-1-carboxylic acid synthase AGPase ADP-glucose pyrophosphorylase ANCOVA Analysis of Covariance ANOVA Analysis of Variance AOA Aminooxyacetic Acid Area The area above the fluorescence rise between Fo and Fm ATP Adenosine Triphosphate AVG Aminoethoxyvinylglycine B Boron bp base pair BP Bitter pit C H Ethylene 2 4 CA Controlled atmosphere Ca Calcium Ca(No ) Calcium nitrate 3 2 CaCl Calcium chloride 2 CaM Calmodulin cDNA Complimentary DNA CO Carbon dioxide 2 CPRs The County ploidy ratios ix Ctols Conjugated trienols CT Constant Threshold DAA Days After Anthesis DEPC Diethylpyrocarbonate DNA Deoxyribonucleic acid DPA Diphenylamine EDTA Ethylenediaminetetraacetic acid EELS Electron Energy Loss Spectroscopy EMRA East Malling Research Association EMRS East Malling Research Station EtBr Ethidium Bromide EU European Union F Energy lost from photosystem II as fluorescence FAO Food and Agriculture Organization FeSO Ferrous sulphate 4 F Fluorescence Intensity at 50 μs 1 F Fluorescence Intensity at 150 μs 2 F Fluorescence Intensity at 300 μs 3 F Fluorescence Intensity at 2 ms 4 F Fluorescence Intensity at 30 ms 5 Fm Maximum Fluorescence Yield Fo Minimum Fluorescence Yield Fluorescence (arb.) Fluorescence absorbance (arb. logarithm unit) FTA Fruit Texture Analyser Fv Variable Fluorescence Yield Fv/Fm Maximum Efficiency of Photosystem II GC Gas Chromatography HCl Hydrogen chloride HPLC High Performance Liquid Chromatography ICP Inductively Coupled Plasma ITS Internal Transcribed Spacer K Potassium KDa Kilo Dalton x

Description:
to Mr. Stephen Young for all his help, support and kind instructions in statistics and analysis of data. My grateful thanks to Dr. Nazanin Zand and her colleagues at laboratories of School of Science. (University developed. Another diagnostic model based on changes in the proportion of calcium oxa
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.