ebook img

Development of a Numerical Model for the Heat and Mass Transport in an Electric Arc Furnace ... PDF

163 Pages·2016·12.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of a Numerical Model for the Heat and Mass Transport in an Electric Arc Furnace ...

“Development of a Numerical Model for the Heat and Mass Transport in an Electric Arc Furnace Freeboard” From the Faculty of Georesources and Materials Engineering of the RWTH Aachen University Submitted by Dipl- Ing. Jacqueline Christina Gruber from Johannesburg, South Africa in respect of the academic degree of Doctor of Engineering approved thesis Advisors: Univ.-Prof. Dr.-Ing. Herbert Pfeifer Prof. Dr.-Ing. Klaus Krüger PD Dr. rer. nat. M. Kirschen Date of the oral examination: 09.12.2015 This thesis is available in electronic format on the university library’s website Jaqueline Christina Gruber Development of a Numerical Model for the Heat and Mass Transport in an Electric Arc Furnace Freeboard ISBN: 978-3-95886-087-2 1. Auflage 2016 Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Da- ten sind im Internet über http://dnb.ddb.de abrufbar. Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Verwendung ist ohne die Zustimmung des Herausgebers außerhalb der engen Grenzen des Urhebergesetzes unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen. Vertrieb: 1. Auflage 2016 © Verlagshaus Mainz GmbH Aachen Süsterfeldstr. 83, 52072 Aachen Tel. 0241/87 34 34 Fax 0241/87 55 77 www.Verlag-Mainz.de Herstellung: Druck und Verlagshaus Mainz GmbH Aachen Süsterfeldstraße 83 52072 Aachen Tel. 0241/87 34 34 Fax 0241/87 55 77 www.DruckereiMainz.de Satz: nach Druckvorlage des Autors Umschlaggestaltung: Druckerei Mainz printed in Germany D 82 (Diss. RWTH Aachen University, 2015) Acknowledgements This thesis was created during my time as a research associate at the Department of Industrial Furnaces and Heat Engineering (IOB) of the RWTH Aachen University in Germany. I would especially like to thank University Professor Dr.-Ing. Herbert Pfeifer and Dr.-Ing. Thomas Echterhof for giving me the opportunity to carry out the work concerning this dissertation and for their patience, guidance, encouragement and advice. I greatly appreciate the invaluable input, especially of Professor Pfeifer, during the phase when the results of the work done had to be consolidated, explained and clearly presented, resulting in this thesis. In addition, the constructive advice and correction suggestions made by both Prof. Dr.-Ing. Klaus Krüger and PD Dr. rer. nat. Markus Kirschen should be mentioned. I would like to thank both my advisors for their time and for their valuable input, giving me the benefit of advice based on many years of in-depth experience concerning the topic of steel production in an EAF. I would also like to thank all my colleagues at the IOB for their support. My special thanks goes to those who have become good friends and whose inspiration, advice, good cheer and company make working at the IOB a pleasure. Last, but not least, I would like to thank my family, my children and especially my husband, for their support and patience. i Content Nomenclature ................................................................................................................................ iii Abstract ....................................................................................................................................... viii Kurzfassung ................................................................................................................................... x 1 Introduction ............................................................................................................................. 1 1.1 EAF-Steelmaking ................................................................................................................ 1 1.1.1 Relevance of the EAF steel production route ............................................................... 1 1.1.2 Types of electric arc furnaces....................................................................................... 2 1.1.3 Description of the EAF steelmaking process ................................................................ 3 1.2 Problem definition, objectives and approach ...................................................................... 5 2 Current state of research ..................................................................................................... 10 2.1 Numerical models of the heat and mass transport in an EAF freeboard ........................... 10 2.2 Electric arc models............................................................................................................ 27 2.2.1 Magneto- fluid dynamic models .................................................................................. 27 2.2.2 Channel Arc Model (CAM) ......................................................................................... 36 2.2.3 Black-box models ....................................................................................................... 39 2.3 Experimental investigations .............................................................................................. 40 3 EAF model description ......................................................................................................... 45 3.1 Basic characteristics ......................................................................................................... 45 3.2 Arc model .......................................................................................................................... 46 3.3 Electrode model ................................................................................................................ 47 3.4 Thermal radiation model ................................................................................................... 48 3.5 Modelling of chemical reactions ........................................................................................ 52 3.6 Conservation equations and turbulence modelling ........................................................... 56 3.6.1 Mass, momentum and energy conservation ............................................................... 56 3.6.2 Turbulence ................................................................................................................. 58 3.6.3 Wall functions and wall surface roughness ................................................................ 61 4 Model implementation .......................................................................................................... 64 4.1 Geometry .......................................................................................................................... 64 4.2 Discretisation .................................................................................................................... 67 4.2.1 Influence of boundary conditions on convergence of simulations .............................. 67 4.2.2 Mesh sensitivity study ................................................................................................ 70 4.3 Material properties ............................................................................................................ 72 ii 4.3.1 Fluids .......................................................................................................................... 72 4.3.2 Solids ......................................................................................................................... 75 4.4 Boundary conditions ......................................................................................................... 76 4.4.1 Inflows, outflows and sources..................................................................................... 76 4.4.2 Electrodes .................................................................................................................. 79 4.4.3 Electric arc region ....................................................................................................... 79 4.4.4 Surfaces ..................................................................................................................... 81 5 Results ................................................................................................................................... 83 5.1 Overview of simulations .................................................................................................... 83 5.2 Arc region modelling ......................................................................................................... 85 5.2.1 Flow field .................................................................................................................... 85 5.2.2 Temperature distributions ........................................................................................... 91 5.2.3 Mass transfer and post-combustion ........................................................................... 96 5.2.4 Residence time ........................................................................................................... 99 5.2.5 Energy flows ............................................................................................................. 102 5.3 Slag layer height ............................................................................................................. 105 5.3.1 Flow field .................................................................................................................. 105 5.3.2 Temperature distributions ......................................................................................... 109 5.3.3 Mass transfer and post-combustion ......................................................................... 113 5.3.4 Energy flows ............................................................................................................. 114 5.4 Validation of Results ....................................................................................................... 116 5.4.1 Electrode temperature profile ................................................................................... 116 5.4.2 Energy Flows............................................................................................................ 117 6 Conclusions and Recommendations ................................................................................ 119 7 Summary ............................................................................................................................. 122 8 References .......................................................................................................................... 126 9 Appendix ............................................................................................................................. 131 9.1 User subroutine - Energy source/sink due to electrode consumption ............................. 131 9.2 Overview of simulation results ........................................................................................ 136 Nomenclature iii Nomenclature Latin characters Symbol Description Unit a Absorption coeff. of a fluid for thermal radiation 1/m A Area of arc inlet m2 arc,inlet A Pre-exp. factor for Arrhenius reaction rate 1/s r C Molar concentration of species j kmol/m3 j,r c Specific heat J/(kg·K) p C Roughness constant - S d Diameter m d Electrode diameter m electrode d Diameter of upper vessel of EAF m uppervessel e Electron charge C E Internal energy J/kg (cid:40) Energy inflow of air W (cid:68)(cid:76)(cid:85) (cid:40) Energy outflow due to inflow into arc columns W (cid:68)(cid:85)(cid:70)(cid:15)(cid:76)(cid:81)(cid:73)(cid:79)(cid:82)(cid:90) (cid:40) Energy input due to outflow of arc columns W (cid:68)(cid:85)(cid:70)(cid:15)(cid:82)(cid:88)(cid:87)(cid:73)(cid:79)(cid:82)(cid:90) (cid:40) Energy flow due to convection W (cid:70)(cid:82)(cid:81)(cid:89) (cid:39)(cid:40) Sum of heat of reaction W (cid:70)(cid:75)(cid:72)(cid:80)(cid:17)(cid:85)(cid:72)(cid:68)(cid:70)(cid:17) (cid:40) Net energy input due to thermal radiation exchange W (cid:70)(cid:92)(cid:79)(cid:17)(cid:86)(cid:88)(cid:85)(cid:73)(cid:68)(cid:70)(cid:72) and convection at the cylindrical surface (cid:40) Energy outflow of off-gas W (cid:82)(cid:73)(cid:73)(cid:16)(cid:74)(cid:68)(cid:86) E Activation energy for Arrhenius reaction rate J/kmol r (cid:40) Net energy input due to CO sources and O2 sink W (cid:86)(cid:82)(cid:88)(cid:85)(cid:70)(cid:72)(cid:86) (cid:40) Energy inflow of steam W (cid:86)(cid:87)(cid:72)(cid:68)(cid:80) f Frequency 1/s (cid:41) External body force vector N/m3 g Gravitational acceleration m/s2 G Generation of k due to buoyancy W/m3 b G Generation of k due to mean velocity gradients W/m3 k h Specific enthalpy J/kg h Arc specific enthalpy J/kg arc h Surrounding fluid specific enthalpy J/kg F h Height of foaming slag layer m slag I Electric arc current A arc,elec I Electric current A elec I Electric current flowing through the electrodes A electrode I Thermal radiation intensity W/m2 rad j Electric current density A/m2 j Mean electric arc current density (CAM) kA/cm2 arc,CAM iv Nomenclature JJ Diffusion flux of species j kg/(s·m2) j j Average electric current density at the cathode A/m2 cathode J Maximum electric current density A/m2 max k Turbulent kinetic energy m2/s2 k Boltzmann’s constant J/K B k Effective conductivity W/(m·K) eff k Arrhenius forward rate constant for reaction r 1/s f,r K Surface roughness height m S Arc length from electrode tip to bath (CAM) m arc,CAM Characteristic length m ch Electrode length m electrode mm Mass flow rate kg/s mm Mass flow rate in arc channel (CAM) kg/s aarrcc,CCAAMM mm Defined mass flow rate into arc channel kg/s aarrcc,iinnffllooww m EAF capacity tons tap m Mass flow rate of ingress air into EAF kg/s ingress_air m Mass flow rate of air at post-combustion gap kg/s post_combustion_air m Total mass flow rate of off-gas kg/s total,off(cid:16)gas M Molecular weight of species i kg/mol w,i n Coordinate normal to a wall m n Refractive index - O Work function for the anode V an P Operating power W p Pressure Pa P Electric arc power due to Joule heating W arc,Joule P Energy dissipation at the electric arcs due to W conv,CAM convection P Energy dissipation at the electric arcs due to electron W e,CAM flow P Electrical power input W in,electric p Operating pressure Pa op P Energy dissipation at the electric arcs due to radiation W r,CAM p Static pressure of surroundings Pa s QQ Energy input from arc region W arcregiion QQ Energy input at plasma/electrode interface W arc//ellecttrodde QQ Energy input at plasma/melt interface W arc//melltt QQ Energy outflow due to cooling by water cooled panels W coolliing QQ Net energy outflow at bottom surface W bbatthh QQ Energy outflow by conduction at top surface of W condduc.ellecttr. electrodes QQ Heat source in the electrodes due to Joule heating W ellecttrodde q(cid:99)(cid:99)(cid:99)(cid:99)(cid:99)(cid:99) Volumetric electrode heat source due to Joule heating W/m3 electrode Nomenclature v QQ Energy outflow due to heat losses at the uncooled W hheattlloss walls made of refractory material QQ Joule heating of the electrodes W JJoullehheattiing QQ Energy loss due to thermal radiation out of all gaps and W radd.,gaps the slag door QQ Energy flow due to thermal radiation W tthhermallraddiiattion QQ Total heat transferred at the anode surface W ttottall,anodde R Universal gas constant J/(K·mol) r Radius m rr Point position m r Radius of electric arc (CAM) m arc,CAM R Electrical resistance V/A = (cid:58)(cid:3) arc r Cathode spot radius m cathode R Electric resistance (cid:58)(cid:3) electrode Rˆ Molar rate of creation or destruction of species i during kmol/(m3· i,r reaction r(cid:3)(cid:3)(cid:3) s) R Net rate of production of species i due to reaction r kg/(m3·s) i,r ss Vector direction m S User defined source term W/m3·s (cid:72) S Energy sources W/m3 h S User defined source term W/m3 k S Mass sources kg/(s·m3) m T Temperature K t Time s T Arc temperature (CAM) K arc T Temperature of surroundings Pa S u* Dimensionless velocity - U , U , U AC phase voltages V 1 2 3 U , U , U Phase to phase voltages V 12 23 31 U Anode drop voltage V an U Electric potential of the electric arc V arc u, u Velocity components in i- or j- direction m/s i j u Mean velocity of the fluid at the near-wall node P m/s P u Arc radiation density W/m3 rad,arc V Volume m3 VV Volumetric flow rate m3/s V , V , V AC phase voltages without transformer voltage drop V 1 2 3 V Electrode volume m3 electrode V Neutral point potential V m v Average gas velocity of arc (CAM) m/s arc,CAM v Velocity defined at arc inlets m/s arc,inflow vv Velocity vector m/s v Tangential velocity component at a wall m/s t v ,v ,v Velocity components in x-, y-, z-direction m/s x y z vi Nomenclature x Mole fraction of species i - n,i Y Contribution of fluctuating dilation in compr. turbulence W/m3 m to the overall dissipation rate x, y, z Cylindrical coordinates m y Distance of near-wall node P from the wall m P Z Transformer and reactor impedance (cid:58) tr Z Line impedance (cid:58) line Z Arc impedance (cid:58) arc Z Media impedance (cid:58) media Greek characters Symbol Description Unit (cid:69) Temperature exponent for Arrhenius reaction rate - r (cid:71) Kronecker delta ((cid:71) = 0 if i (cid:122)(cid:3)j and (cid:71) = 1 if i = j) - i,j ij ij d(cid:58)(cid:3) Solid angle m2/m2 (cid:72)(cid:3) Emissivity - (cid:72)(cid:3) Turbulent dissipation rate m2/s3 (cid:73) Electric potential V elec (cid:73)(cid:3) Scalar (e.g. velocity, pressure, shear stress,…) - (cid:78)(cid:3) Isentropic exponent - (cid:79) Thermal conductivity W/(m·K) (cid:79) Air-fuel equivalence ratio - (cid:80) Magnetic field constant H/m 0 (cid:80)(cid:3) Dynamic viscosity kg/(s·m) (cid:80) Turbulent viscosity kg/(s·m) t (cid:75)(cid:99) Reactant rate exp. of species j for reaction r - j,r (cid:75)(cid:99)(cid:99) Product rate exp. of species j for reaction r - j,r (cid:81)(cid:99) (cid:3) Reactant stoichiometric coeff. of species j for reaction r - j,r (cid:81)(cid:99)(cid:99) Product stoichiometric coeff. of species j for reaction r - j,r (cid:85)(cid:3) Density kg/m3 (cid:85) Density of a DC arc kg/m3 DC (cid:85) Specific electrical resistance (cid:58)·m elec,arc (cid:86)(cid:3) Stefan-Boltzmann constant J/K (cid:86) Electrical conductivity A/(V·m) elec (cid:86) (cid:86) Turbulent Prandtl numbers - k, (cid:72)(cid:3) (cid:86) Scattering coefficient 1/m s (cid:87)(cid:3) Shear stress N/m2 (cid:87)(cid:3) Space-time s (cid:90)(cid:3) Pulsation of the power supply voltage 1/s (cid:91) Mass fraction of species i kg/kg i Y Mass fraction of species i kg/kg i Abbreviations Abbreviation Meaning AC Alternating current

Description:
“Development of a Numerical Model for the Heat and Mass Transport in an Electric Arc Furnace. Freeboard”. From the in the CFD code. ANSYS FLUENT (Version 14.5) was chosen to model the thermal radiation present a 3D CFD numerical simulation model for an AC EAF. As can be seen in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.