ebook img

Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes PDF

0.54 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes S.Tanaka,S.Ozaki,Y.Sakamoto,R.Tanuma,T.YoshidaandJ.Murata DepartmentofPhysics,RikkyoUniversity,3-34-1Nishi-ikebukuro,Tokyo171-8501,Japan 4 Abstract 1 0Anewtypeofatrigger-scintillationcounterarraydesignedfortheMTVexperimentatTRIUMF-ISAChasbeendeveloped,which 2usesaluminum-metallizedfilmtapeforwrappingtoachievetherequiredassemblingprecisionof±0.5mm. TheMTVexperiment rusesacylindricaldriftchamber(CDC)asthemainelectron-trackingdetector. Thebarrel-typetriggercounterisplacedinsidethe a MCDCtogenerateatriggersignalusing1mmthick,300mmlongthinplasticscintillationcounters. Detectionefficiencyandlight attenuationcomparedwithconventionalwrappingmaterialsarestudied. 3 Keywords: PlasticScintillationCounter,WrappingMaterial,Aluminum-MetallizedFilm 1 ] et1. Introduction MTV-CDC setup d s- The MTV experiment[1, 2] aimsto performthe finest pre- Beam Stopper Analyzer Foil n cisiontestoftimereversalsymmetryinnuclearbetadecayby i .means of searching non-zero T-violating transverse polariza- s Stopping Counter (SC) ctionoftheelectronsemittedfrompolarizedLi-8nuclei,which CDC iisproducedatTRIUMF-ISAC[3]. Thisquantitymayoriginate s yfromtheexistenceofaT-violatingtriplevectorcorrelationde- hfined as R-correlationin beta decayrate function[4]. The ex- p istence of the R-correlation can be explored as the electron’s [ non-zerotransversepolarization,whichisperpendiculartothe 2parentnuclearpolarizationdirection[5]. The electron’strans- Polaized Li-8 Beam v verse polarization is measured as a backward-scattering left- 1 right asymmetry from a thin (100 µm) lead analyzer foil us- 6 1ingtheknownanalyzingpoweroftheMottscattering[6]. The Trigger Counter (TC) 5polarized Li-8 beam with 80% horizontally polarized 28 keV .beam at107 ppsis irradiatedona surfaceof 10µm thickalu- 1 Figure1: DetectorsetupoftheMTVexperiment: triggercounter(TC),stop- 0minumbeamstopperfoilforwhichaspinrelaxationtimeof2.3 ping counter (SC), and cylindrical drift chamber. The lead analyzer foil is 4s is achieved using a pair of permanentmagnets sandwiching placedaroundtheCDC.TheFRPbeamstoppertubeisnotshown. 1the stopperfoilplacedin thehorizontaldirectionto producea : vspin-holdingmagneticfieldofapproximately300G.Thestop- iperisplacedinsidea1.5mmthickvacuumtubemadeoffiber polarizedSr(Y)-90radiationsource. Longitudinallypolarized X reinforcedplastics(FRP),designedtoreducethetotalmaterial electronsareemittedinnuclearbetadecay,becauseofthepar- r aamount and mean atomic number Z to suppress the multiple ityviolatingweakinteraction. Thislongitudinalpolarizationis scatteringofthelow-energyelectronsemittedfromthebetade- transferredto transversepolarizationin Coulombscatteringat cay. thefirstfoil,andthen,itstransversepolarizationismeasuredin The electronsemitted from the Li-8 nucleifly out from the thesecondaryMottscatteringanalyzerfoil[7]. Themaximum FRPstoppertube,andtheirpolarizationismeasuredusingthe beta energies of Li-8 and Y-90 are 13.1 MeV and 2.3 MeV, MTV detectorarray. Inadditionto theLi-8 measurement,we respectively, therefore, the absorbing, multiple scattering, and alsousedthisdetectorsetuptoperformacalibrationmeasure- back-scattering effects of these low-energy electrons must be mentusinganartificiallyproducedtransverselypolarizedelec- considered. tronsource,andalso,agravityexperimentnamedMTV-G[7], The MTV detector setup consists of the beam stopper, trig- which probes large spin precession around the nuclei. In the gercounter(TC),leadanalyzerfoil,stoppingcounter(SC),and MTV-Gandcalibrationmeasurements,theelectron’spolariza- cylindrical drift chamber (CDC), as shown in Figure 1. The tionismeasuredinadoublescatteringexperiment,usinganun- backward-scatteringangulardistributionisthemeasurementof PreprintsubmittedtoNuclearInstrumentsandMethodsA March14,2014 transverse polarization, therefore, the CDC [2] is set as the trackingchambersurroundingthestopper,whichmeasuresthe incidenttracksoriginatingfromthebeamstopperandthescat- photomultiplier teredtracksstartingatthepointontheanalyzerfoilplacedout- 5 mm thick light guide sidetheCDCasV-shaped(”V-track”)events.AtypicalV-track 1 mm thick plastic scintillation counter eventisshowninFigure2.Thenelectron’stransversepolariza- tionisobtainedfromtheleftandrightscatteringasymmetry. Analyzer Foil Mott Scattering TC CDC Figure 3: Overview of the TC, which consists of 12 identical scintillation counterbarscombinedinabarrelconfiguration. positeconfiguration,utilizingparity-violatingemissionangular SC distribution. 2. TriggerCounter(TC)Design The TC needs to satisfy the following requirements: 1) it Figure2: AtypicaleventdisplayshowingaV-track. ThehitontheTC,scat- must be as thin as possible to reduce the multiple scattering teringvertexpositionontheanalyzerfoil,andhitsontheSCandCDCanode of the low-energy electrons around 1 MeV; 2) it must be fast wiresareshown. enoughtogeneratetheLevel-1inputsignalcomparedwiththe TheTC,whichconsistsof12segmented1mmthickplastic CDC’stimescaleof100ns;3)itmusthaveafinepositioningto scintillationcounterbars(Figure3),isplacedinsidetheCDC, reducethesystematiceffectsontheR-correlationandMTV-G surroundingtheFRPstoppervacuumtube.TheSC,whichcon- measurement. sistsof12segmented70mmthickplasticscintillationcounter To meet these requirements, we built 1 mm thick, 300 mm bars, is placed outside of the CDC, which is designed to stop long thin plastic scintillation counter bars and assembled 12 andmeasurethetotalkineticenergyofthescatteredelectrons. such bars to form the TC barrel. Each scintillation bar has 5 The lead analyzer foil is placed between the CDC and SC in mmthick,150mmlongacryliclightguidetotransportthelight a cylindricalconfiguration,anditslocationisshowninFigure outputtothephotomultipliers(PMTs)placedoutsidetheCDC. 2. Therefore,an electron emittedfrom the beamstoppergoes The detailsof the componentsof the TCare listed in Table 1. outintotheair,penetratesoneoftheTCandCDC,andisthen, ThephotographoftheTCisshowninFigure4. PMTreadout backwardly scattered at the analyzer foil, from which it goes atoneendissufficientforthepresentexperiment,sincetiming backtotheCDCagain. Finally,theelectronstopsatoneofthe resolutionbelowcoincidencewindowwidthisnotrequired. It SCbarsafterpenetratingtheanalyzerfoilatapositiondifferent is because timing selection is required only for reducing the fromthescatteredposition. Level-1triggerrate. Inaddition, we donotreaddrifttime in- The event trigger signal consists of two levels of triggering formationfromtheCDC,therefore,theTCdosenotrequested logics. TheLevel-1triggerisgeneratedwithcoincidentsignals toprovidestartingsignalwithgoodtimingresolutiontoachieve betweenthesignalsofaTCandSCwiththetimewindowof25 goodpositionresolutionfromthedriftchamber,whichisdom- ns,whiletheLevel-2triggerrequiresmultiplehitsintheCDC inated bymultiple scattering. However,the TC is designedto anode wires after the Level-1 trigger. The 12 segmentations bepossibletosetPMTsonbothendsasanupgradeplan. of the TC and SC enable a rough selection of the backward- BeforefixingtheTC’sdesign,inordertooptimizethethick- scatteringeventintheLevel-1triggering. ness of the TC, we performed a Monte Carlo simulation to The prime requirementsfor the TC are supplying the input evaluate the energy loss and multiple scattering effects from signal for the Level-1 trigger and working as a hodoscopear- the scintillation counters (without wrapping materials) for the ray to select the rough direction of emission. In addition, the electronsemitted from the Li-8 and Y-90 beta decays. In this TCworksasabeamintensitymonitorbyprovidingacounting custom-madeMonteCarlocode,energylossandmultiplescat- rate as well as an on-targetbeam polarimeter. The transverse teringeffectsareincluded. Sincetheenergyofelectronsemit- beam polarizationcan be determinedby measuringthe count- ted from Sr-90 (maximumbeta energy= 0.55MeV) is small, ingasymmetrybetweenanpairoftheTCcounterssetinanop- it is ignoredin this estimation. In Figures5 and 6, the results 2 material size(mm) Scint. counter BC-408 T.1×W.50×L.300 Lightguide acrylic T.5×W.50×L.150 PMT HamamatsuH-7415 Dia.33×L.130 ent] (a) energy spectra for Y-90 ent] (b) energy spectra for Li-8 Table1:DescriptionoftheTCscintillationcounterbar,consistingofscintilla- v v e e tioncounter,lightguide,andphotomultiplier(PMT).(T.:thickness,W.:width, nt [ nt [ L.:length,andDia.:diameter) cou 1 mm initial energy cou102 102 Stopping Counter (SC) 10 2 mm Trigger Counter (TC) 10 1 0 1 2 3 0 2 4 6 8 10 12 14 energy [MeV] energy [MeV] CDC Figure5: MonteCarlosimulationoftheenergyofoutgoingelectronsthrough 1mmand2mmthickscintillationcountersforY-90andLi-8betadecays.The electron’sinitialenergyisalsoshownforcomparison.Samenumbersofevents aregeneratedforeachcase. Figure4:PhotographoftheTCinstalledinsidetheCDC.TheFRPbeamstop- pertubeisnotshown. oftheMonteCarlosimulationfortheenergyofoutgoingelec- tronsafterenergylossandtheirscatteredangulardistributions are shown, respectively. Only those electrons whose energy waslargerthan0.5MeVwereconsidered.Thenumberofpen- etratingelectronsthatwerenotstoppedorbackscatteredatthe scintillation counterswas estimated. Thepenetratingratesare ent] (a) scattering angle for Y-90 ent] (b) scattering angle for Li-8 v v listed inTable2. Notethatonly35%oftheincidentelectrons nt [e 1 mm nt [e103 can penetrate the 2 mm plastic for Y-90. The mean energy u u o o c c lossandscatteringanglesofforwardscatteringelectronswere 102 calculated and shown in Table 2. In the Y-90 measurements, 2 mm 102 2 mm wefoundslightdifferenceinthemultiplescatteringeffectsbe- 1 mm tweenthe1mmand2mmthicksamples,however,alargedif- ference is expected on the stopping rate. Therefore, the TC 10 shouldbeasthinaspossible(approximately1mm)tomaintain 10 a goodpenetratingrateforthe Y-90measurements. Consider- ingthedetectionefficiencyandmachineability,atleast1mm thicknessisrequired.Fromthisestimation,wedecidedtouse1 backscattered 1 events 1 mmscintillationcounters. IncaseofSr(Y)-90measurements, wedonotusethe1.5mmthickFRPvacuumtubetoreducethe 0 20 40 60 80 100120140160180 0 20 40 60 80 100120140160180 materialamount.TheSr(Y)-90sourceissetinair. angle [deg.] angle [deg.] A key concern on using such thin and long plastic scintil- lation countersis theirexpectedlowefficiencydue tolightat- Figure6:MonteCarlosimulationofthescatteringangulardistributionsofthe tenuation and small initial light yield. On the other hand, the outgoingelectrons(angle<90deg.),andofthebackscatteredelectrons(angle requirementoffinepositioninghasadrawbackwhenwetryto >90deg.)forY-90andLi-8betadecays. rely on total reflection by producing an air-layer surrounding thescintillationbar,whichisrequiredtomakelargerefractive indexdifferenceatthesurface. Therefore, we tried to use a new wrapping material made 3 Y-90 Li-8 age is negligible. Direct taping of the aluminum tape without penetratingratefor1-mm 86% 99% Wrappy is not good because its opaqueglue with poor reflec- penetratingratefor2-mm 35% 98% tion,whichishardtoremovefromtheplasticsurface. meanscatteringanglefor1-mm 37deg. 12deg. Lightattenuationwasstudiedforthe1mmthickTC.Inthis meanscatteringanglefor2-mm 38deg. 17deg. test study, the output of the TC was measured in a test appa- meanenergylossfor1-mm 0.30MeV 0.19Mev ratus using an SC bar to produce trigger signals, as shown in meanenergylossfor2-mm 0.38MeV 0.31MeV Figure8. TheSr(Y)-90radiationsource(3.7MBq)isattached ontheTCwithacollimatoratfivedifferentpositions(positions Table2: MonteCarloestimationoftheelectron’spenetratingrate,meanscat- AtoE,5cmspacing)tomeasurethetransmittinglengthdepen- teringangleandmeanenergylossfor1mmand2mmthickplasticscintillation denceontheoutputpulseheightoftheTCsignal. Theoutput countersforY-90andLi-8betadecays. signalsofthePMTsfromtheTCandSCweremeasuredusing aVME-QDC(CAENV792),withtheQDCgategeneratedby theSCplacedbehindtheTC.Figure9showsthepulseheight ofaluminum-metallizedtape,whichhasagoodmirror-likere- distributionsfromtheTCandSCpositionedatalongdistance flecting surface on both sides of the tape. We use Wrappy (positionA)andshortdistance(positionE).Thedifferencebe- (CEMEDINECo.,Ltd.,[8])asthewrappingtapebecauseofits tweenthemareconsideredastheresultofthelightattenuation mirror-like glossy back side using excellent transparent adhe- intheTC. sive,whichisalsoeasilyremovable. Wrappyisanaluminum- metallizedpolyesterfilmtape,whichconsistsofa25µmthick SC polyester film andgoodtransparentacrylic adhesive. The To- PMT tal thickness of the Wrappy tape is 55± 25µm. The Wrappy tape was directly glued on the surface of the plastic scintilla- tioncounters,asshowninFigure7,whereitiscomparedwith TC a conventional aluminized Mylar wrapping with black vinyl Sr(Y)-90 source A B C D E PMT sheet. The geometrical precision after using the Wrappy tape position inoverlapping-wrappingisabout±0.1mm,whichissufficient forourapplication. 3cm5cm5cm5cm 5cm7cm Figure8: Setupofthetestmeasurementforstudiesofthestudyofthesource positiondependence.TheQDCdatafromtheTCandSCareshown. Wrappy tape 4000 (a) far position (position A) (b) near position (position E) 3500 103 3000 2500 Al. Mylar + vinyl 102 2000 bare scintillation counter 1500 10 1000 Figure7: PhotographoftheTC,wrappedwiththeWrappytape,theconven- 500 tionalaluminizedMylarwithblackvinylsheet,andthebarescintillationbar. 0 1 0 1000 2000 3000 4000 0 1000 2000 3000 4000 3. Testmeasurement Figure9: PMT’spulseheightdistributionsfortheTC(vertical)andSC(hori- The main concern in using a direct taping on the surface zontal)at(a)farand(b)nearpositions. of the scintillation counters without producing an air volume aroundthesurface,istheexpectedreductionoflighttransmis- The light attenuation behaviour can be clearly observed in sion to the PMTs. For our usage, we needed to rely not on one dimensional histograms shown in Figure 10, where the the total reflection at the index boundary between plastic and pulse height distributions are shown for five different source air,butonthereflectionatthetape’sevaporatedsurface. Since positions. As expected, a clear attenuation is observed, how- thelight-shieldingabilityofWrappyisnotsufficientforourre- ever,theattenuationofthepulseheightitselfisnotanissuefor quirementsevenwithmultipleoverlapping,a70µmthickalu- thepresentapplication,becausethe TCisnotrequiredto pro- minumtapeisaddedasacoversothattheremaininglightleak- videenergyinformation,butisexpectedtogeneratethetrigger 4 signal. Therefore,itismoreimportanttoinvestigatethedetec- %] 100 tionefficiency.Figure11showsthepositiondependenceofthe y [ 90 c measured efficiency, defined as (NTC×SC)/NSC after subtract- cien 80 source distance from light guide ingbackgrounds. Theobtainedresultshowsa relativelysmall effi 70 E (7 cm) efficiency reduction compared to the light attenuation shown 60 D (12 cm) in Figure 10, indicatingthat the TC signal remainssignificant C (17 cm) 50 B (22 cm) above the noise level. Althoughthe obtained efficiencyis not A (27 cm) 40 close to100%, itisa problemneitherfortheMTVnorMTV- 30 Gmeasurements,becausetheseexperimentsdonotmeasurean 20 absolute event rate, but measure the asymmetry during beam polarization direction flipping. Therefore, in the double ratio 10 analysis,mostofthesystematiceffectsfromtheefficiencydif- 0 0 10 10 15 20 25 ferencearecancelled.However,timevariationoftheefficiency source position [cm] causessystematic effectsonthe physicsmeasurements,which should be carefully investigated. Also, anisotropic efficiency distribution in azimuthaldirection should be minimizedto re- Figure11:DependenceofthesourcepositionondetectionefficiencyoftheTC. ducethesystematicerror. Itshouldberemarkedthat,althoughadirecttapingwasused onthesurfaceofthescintillationcounterswithoutproducingan studiedonfivedifferentsourcepositionsatadistanceof2cm air-layer, no severe efficiency drop was observed in this mea- from each other. It was found that Wrappy (a) was as good surement. As a result, we concludedthatthe thin 1 mm thick as the conventional aluminized Mylar wrapping (b). More- and300mmlongplasticscintillationcountersdirectlywrapped over, black vinyl sheet without aluminized Mylar (c) showed withWrappyhavesufficientefficiencyforourapplication. almostthesamepropertiesasthatoftheconventionalmaterial (b). Itsuggeststhatthetotalreflectionbetweenplasticandair nt] 2500 isthedominantcontributiontothelighttransmission. Among ve allofthem,thewhitepaintingontheplasticsurfaceshowsthe e nt [ 2000 source positions (distances from light guide) strongestattenuation. u o c A (27 cm) 1500 B (C2 2( 1c7m c)m) ps] 8 c 1000 D (12E c (m7) cm) nt rate [k 67 u (a) Wrappy tape 500 co 5 (b) Al. Mylar 4 (c) air 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 3 TC output [QDC ch] 2 (d) white paint 1 Figure10:PMT’soutputchargedistributionsoftheTCatdifferentsourcepo- 0 sitionsfromAtoE.SincetheQDCgatesignalisgeneratedusingtheSC,this 0 2 4 6 8 10 12 14 signalrepresents∆EintheTC. source distance from PMT [cm] 4. Discussion Figure 12: Wrapping material effect on the counting rate measured for a 1 mmthick,25mmwide,and140mmlongplasticscintillation counterfor(a) The TC built for the MTV experiment proved to have suf- Wrappytapewithaluminumtape,(b)aluminizedMylarwithblackvinylsheet, (c)air(blackvinylsheetwithoutaluminizedMylar),and(d)whitepaint. ficient absolute detection efficiency. Independently, from the applicationfortheMTVexperiment,wealsostudiedthedepen- denceofthewrappingmaterialonthePMT’soutputin aded- TheresultsofcountingratesshowninFigure12dependon icated measurement. A plastic scintillation counter (1 mm in thresholdsettings,therefore,QDCspectraarebettertobeused thickness,25mminwidth,and140mminlength)wasusedto forthecomparison. Indeed,theattenuationdifferenceis more studythiswrappingmaterialdependence.Wetested(a)Wrappy clearly seen in Figure 13. The QDC spectra of the materials with a 70 µm covering aluminum tape, (b) conventional alu- containing (a) Wrappy and (b) aluminized Mylar at different minizedMylarwithcoveringblackvinylsheet,(c)blackvinyl sourcepositionsfromthePMT areshown. AluminizedMylar sheet, and(d)white acrylicpaint. Figure12showsthecount- showedalightattenuationstrongerthanofWrappy.Therefore, ingratemeasuredinasetupsimilartothatshowninFigure8. we can conclude that the Wrappy taping has excellent perfor- Inthismeasurement,thesourcepositiondependencehasbeen mancecomparedwiththeconventionalwrappingmaterials. 5 ent] 105 (a) Wrappy tape (b) Al. Mylar v e nt [ cou 104 3 10 4 cm 102 8 cm6 cm 10 cm 12 cm 10 1 0 1000 2000 3000 4000 0 1000 2000 3000 4000 QDC [ch] QDC [ch] Figure 13: Wrapping material effect onthelightattenuation. QDCdataare shownforWrappyandaluminizedMylarcases,fordifferentsourcepositions of4,6,8,10,and12cmfromthePMT. 5. Conclusion In summary, we attempted the direct taping on the surface ofaplasticscintillationcountertoimprovethepositioningpre- cision for the MTV and MTV-G experiments. Although, as expected, a slight attenuationwas observed, the efficiencydid not drastically drop, which would have negatively influenced theresultsoftheexperiments. Wefoundanew,easy,andreli- able methodto wrap scintillationcounters, which canbe used for many other experiments and applications. For example, this new wrapping technique could be used for building fine segmentedscintillationcounterarrays,orscintillationcounters placedinsidevacuumchambers. 6. Acknowledgements This work was supported by TRIUMF’s staffs under many technical aspects. This work was supported by the JSPS KAKENHIGrant-in-AidforScientificResearch(B)25287061, ChallengingExploratoryResearch24654070,andRikkyoUni- versity Special Fund for Research (for Graduate Students 2013). References [1] J.Murataetal.,J.Phys.CS312(2011)102011. [2] J.Murataetal.,Hyp.Int.225(2014)193. [3] C.D.P.Levyetal.,Hyp.Int.225(2014)165. [4] J.D.Jacksonetal.,Nucl.Phys.A4(1957)206,Phys.Rev.106(1957) 517;N.Severijnsetal.,Rev.Mod.Phys.78(2006)991. [5] R.Huberetal.,Phys.Rev.Lett.90(2003)202301. [6] J.Sromickietal.,Phys.Rev.Lett.82(1999)57. [7] S.Tanakaetal.,J.Phys.CS453(2013)012018. [8] Product name : CEMEDINE Wrappy, CEMEDINE Co., Ltd., Japan. http://www.cemedine.co.jp/e/index.html Product Code (SDS No) : GE0830-1. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.