ebook img

DEVELOPMENT OF A NEW HIGH SPECIFIC POWER PIEZOELECTRIC ACTUATOR PDF

249 Pages·2004·5.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DEVELOPMENT OF A NEW HIGH SPECIFIC POWER PIEZOELECTRIC ACTUATOR

The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering DEVELOPMENT OF A NEW HIGH SPECIFIC POWER PIEZOELECTRIC ACTUATOR A Thesis in Mechanical Engineering by Jacob Joseph Loverich (cid:211) 2004 Jacob Joseph Loverich Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2004 The thesis of Jacob Loverich was reviewed and approved* by the following: Gary H. Koopmann Professor of Mechanical Engineering Thesis Co-advisor Chair of Committee George A. Lesieutre Professor of Aerospace Engineering Thesis Co-advisor Eric M. Mockensturm Assistant Professor of Mechanical Engineering Christopher Rahn Professor of Mechanical Engineering Richard C. Benson Professor of Mechanical Engineering Head of the Department of Mechanical Engineering *Signatures are on file in the Graduate School iii ABSTRACT Lightweight and powerful (high specific power) electromechanical actuators are essential components for applications such as articulating aircraft flight control surfaces. Fundamental limitations of conventional electromagnetic actuators necessitate the pursuit of new actuation concepts for improved performance. This dissertation explores a novel high specific power density actuator concept based on exploiting the high energy density actuation capacity of piezoelectric materials. The main challenge in developing piezoelectric actuators is harnessing a piezoelectric material’s low-displacement and high-force electric field-induced actuation characteristics to perform large-displacement application-based actuation. In this dissertation, a piezoelectric actuation concept is presented that uses a new feed-screw motion accumulation technique. The feed-screw concept involves accumulating high frequency actuation strokes of a piezoelectric stack (driving element) by intermittently rotating nuts on an output feed-screw. Compared to existing piezoelectric actuator technology, significant features of the feed- screw concept include reversible and robust actuation capability, simple power electronics, and a rigid power-off self-locking state. A prototype feed-screw actuator (developed for a morphing aircraft structure project) demonstrated a 1235 lb blocked force, 29 W peak power output, and 6.1 W/kg specific power. To improve upon the prototype actuator’s 6.1 W/kg specific power, a mathematical model was developed as a design optimization tool. The model is significant because it accounts for nonlinear, nut-screw contact stiffness, and both pre-sliding stiffness and rate- dependent friction behavior. Design optimization results indicate that the feed-screw actuator could potentially achieve a 195 W/kg specific power—a level that is more than double that of a similar size electromagnetic actuator (100% duty cycle). iv TABLE OF CONTENTS LIST OF FIGURES...................................................................................................................vii LIST OF TABLES.......................................................................................................................xi ACKNOWLEGEMENTS..........................................................................................................xii Chapter 1: INTRODUCTION......................................................................................................1 1.1 Electromechanical energy conversion..............................................................................1 1.1.1 Overview of electromagnetic actuators...................................................................2 1.1.2 Limitations of electromagnetic actuators.................................................................5 1.2 Improving electromechanical actuators..........................................................................10 1.2.1 Active materials.....................................................................................................10 1.2.2 Specific power of piezoelectric materials..............................................................11 1.2.3 Piezoelectric actuators...........................................................................................15 1.3 Research approach and organization..............................................................................17 Chapter 2: PIEZOELECTRIC THEORY...................................................................................19 2.1 Origins of electric field-induced strain in ferroelectric materials...................................19 2.1.1 Historical overview of piezoelectricity..................................................................19 2.1.2 Crystal structure.....................................................................................................20 2.1.3 Spontaneous polarization.......................................................................................21 2.1.4 Crystalline structures.............................................................................................22 2.1.5 The piezoelectric effect..........................................................................................24 2.2 Phenomenology of piezoelectric materials.....................................................................25 2.2.1 Landau theory........................................................................................................25 2.2.2 Gibbs energy and piezoelectric constitutive equations..........................................30 2.2.3 Piezoelectric constitutive relations........................................................................34 2.2.4 Electromechanical coupling...................................................................................36 2.3 Piezoceramics.................................................................................................................38 2.3.1 Piezoceramics versus single-crystals.....................................................................39 2.3.2 Dopants..................................................................................................................40 2.3.3 Hysteresis...............................................................................................................41 2.3.4 Effect of compressive stress..................................................................................42 2.3.5 PZT........................................................................................................................42 2.4 Piezoceramic actuators...................................................................................................43 2.4.1 Characterizing a piezoelectric material’s actuation capability..............................44 2.4.2 Multilayer devices ................................................................................................47 2.4.2.1 Piezoelectric stack actuation ........................................................................47 2.4.2.2 Stack pre-compression..................................................................................50 2.4.2.3 Dynamic operation........................................................................................53 2.4.3 Flexure based actuation.........................................................................................54 v Chapter 3: SURVEY OF PIEZOELECTRIC ACTUATORS AND MOTORS .......................56 3.1 Types of piezoelectric actuators and motors..................................................................56 3.2 Ultrasonic motors............................................................................................................58 3.2.1 Standing wave motors............................................................................................58 3.2.2 Traveling wave motors..........................................................................................60 3.3 Quasi-static actuators and motors...................................................................................63 3.3.1 Inchworm actuators...............................................................................................63 3.3.2 Ratcheting motors..................................................................................................70 3.3.3 Piezoelectric pump actuators.................................................................................79 3.4 EMA vs. Piezoelectric actuators.....................................................................................82 Chapter 4: A NEW PIEZOELECTRIC ACTUATOR...............................................................85 4.1 Improving quasi-static piezoelectric actuators...............................................................85 4.1.1 Structural compliance............................................................................................86 4.1.2 Internal actuator dynamics.....................................................................................95 4.2 A new quasi-static piezoelectric actuator.......................................................................99 4.2.1 Hybrid actuator concept.......................................................................................100 4.2.2 The hybrid clamp.................................................................................................101 4.2.3 Four-quadrant operation......................................................................................104 4.2.4 The improved feed-screw design.........................................................................110 4.3 Concept originality.......................................................................................................111 Chapter 5: EXPERIMENTAL FEED-SCREW ACTUATOR DEVELOPMENT..................113 5.1 Hybrid actuator prototypes...........................................................................................113 5.1.1 Initial proof-of-concept prototype.......................................................................113 5.1.2 Feed-screw prototype...........................................................................................115 5.1.3 Ball screw prototype............................................................................................116 5.2 Development of a new feed-screw actuator..................................................................118 5.2.1 Lockheed’s Leading Edge Flap application........................................................119 5.2.2 Feed-screw actuators for achieving the LEF requirements.................................122 5.2.3 LEF feed-screw actuator design..........................................................................123 5.2.4 Fabrication and assembly of the LEF actuator....................................................133 5.2.5 LEF Actuator testing............................................................................................138 5.3 Improving the LEF feed-screw actuator.......................................................................144 5.3.1 Nut roller thrust bearings.....................................................................................144 5.3.2 Ultrasonic bias motor...........................................................................................147 5.3.3 Other experimental work.....................................................................................150 5.4 A perspective on the LEF actuator...............................................................................154 vi Chapter 6: ACTUATOR MODELING AND DESIGN OPTIMIZATION.............................157 6.1 A dynamic feed-screw actuator model.........................................................................157 6.1.1 Developing the basic actuator model...................................................................157 6.1.2 Modeling the screw-nut interface stiffness..........................................................162 6.1.3 An accurate and computationally efficient friction model..................................167 6.2 Formulating and solving the model’s governing equations..........................................171 6.2.1 Simulink actuator model......................................................................................172 6.2.2 Numerical simulation...........................................................................................176 6.3 Feed-screw actuator design optimization.....................................................................180 6.3.1 Design variables and optimization approach.......................................................180 6.3.2 A direct search optimization method: Simulated annealing................................182 6.3.3 Optimal LEF actuator design...............................................................................186 6.3.4 Design optimization of an electromagnetic bias motor feed-screw actuator ......193 Chapter 7: CONCLUSIONS AND FUTURE WORK.............................................................198 7.1 Dissertation summary...................................................................................................198 7.2 Significance of work.....................................................................................................201 7.3 Future work...................................................................................................................202 BIBLIOGRAPHY.....................................................................................................................203 Appendix A: LEF ACTUATOR DRAWINGS........................................................................207 Appendix B: SIMULINK MODEL..........................................................................................217 Appendix C: SIMULATED ANNEALING OPTIMIZATION ROUTINE.............................231 vii LIST OF FIGURES Figure 1.1: Electromagnetic screw actuators................................................................................2 Figure 1.2: Specific power versus power output of electromagnetic screw actuators..................4 Figure 1.3: Schematic of an electromagnetic motor.....................................................................5 Figure 1.4: Specific power versus its length for a piezoelectric element...................................14 Figure 1.5: Breskend’s patent sketch of a motion-accumulating mechanism............................16 Figure 2.1: Perovskite crystalline structure, a) unpolarized, and b) polarized...........................21 Figure 2.2: Energy functions in a dielectric material.................................................................22 Figure 2.3: Crystalline structures within the ferroelectric phase................................................23 Figure 2.4: Change in Landau energy with temperature............................................................28 Figure 2.5: Temperature dependence of spontaneous polarization and permittivity..................30 Figure 2.6: Axis designation.......................................................................................................34 Figure 2.7: Loading cycle for determine electromechanical coupling coefficient.....................37 Figure 2.8: Mechanical and electrical loading curves................................................................37 Figure 2.9: Hysteresis in piezoelectric effect.............................................................................41 Figure 2.10: Piezoceramic block................................................................................................44 Figure 2.11: Equivalent spring model........................................................................................45 Figure 2.12: Force displacement characterization of a piezoceramic.........................................46 Figure 2.13: a) Example co-fired stack, b) bonded stack...........................................................48 Figure 2.14: Effect of including electrode stiffness in spring model.........................................49 Figure 2.15: a) Amplified bias compression assembly, b) in-line bias compression.................51 Figure 2.16: Effect of including bias compression to stack spring model..................................52 Figure 2.17: Piezoelectric flexure actuator.................................................................................55 Figure 3.1: Types of piezoelectric actuators and motors............................................................57 Figure 3.2: Standing-wave wobble motor..................................................................................59 Figure 3.3: a) Uchino’s miniature piezoelectric motor and b) performance..............................59 Figure 3.4: Schematic of traveling wave motor..........................................................................60 Figure 3.5: Shinsei traveling wave motor ..................................................................................61 Figure 3.6: Shinsei motor speed versus torque performance......................................................62 Figure 3.7: Inchworm actuator stepping sequence.....................................................................64 Figure 3.8: Example inchworm actuator time history................................................................64 Figure 3.9: Burleigh’s latest inchworm and patent sketch.........................................................65 Figure 3.10: The Burleigh inchworm’s power versus speed performance.................................66 Figure 3.11: a) UCLA’s micro clamp design and b) Murata patent sketch................................67 Figure 3.12: Burleigh rail clamp design.....................................................................................68 Figure 3.13: H3DB inchworm actuator......................................................................................69 Figure 3.14: Roller clutch...........................................................................................................71 Figure 3.15: King’s stack-driven roller clutch motor.................................................................72 Figure 3.16: Penn State’s bimorph motor...................................................................................73 Figure 3.17: Optimized bimorph motor......................................................................................73 Figure 3.18: Experimentally measured and optimized bimorph motor performance.................74 Figure 3.19: Penn State’s Roller clutch stack-driven motor.......................................................75 Figure 3.20: Stack-driven motor.................................................................................................76 viii Figure 3.21: Power versus speed performance of the stack-driven roller clutch motor.............77 Figure 3.22: Linear diode concept using solenoid to actuate rollers..........................................78 Figure 3.24: Solenoid linear diode stiffness...............................................................................78 Figure 3.25: Piezoelectric pump concept....................................................................................80 Figure 3.26: CSA’s piezoelectric pump......................................................................................81 Figure 3.27: MIT’s micro piezoelectric pump............................................................................82 Figure 3.28: Specific power comparison of piezoelectric motors and actuators with EMA......83 Figure 4.1: Stack driving a generic quasi-static motion accumulator........................................86 Figure 4.2: Piezoelectric stack force versus displacement.........................................................87 Figure 4.3: Stack driving a compliant generic quasi-static motion accumulator.......................89 Figure 4.4: Stack force versus displacement with series compliance.........................................89 Figure 4.5: Compliant passive clamp.........................................................................................91 Figure 4.6: Two piezoelectric actuator configurations...............................................................93 Figure 4.7: Lumped parameter model of the stack-driven roller clutch motor..........................96 Figure 4.8: Simulated time histories at a) 300, b) 600, and c) 900 Hz driving frequencies.......97 Figure 4.9: Simulation rotor-stack motion amplification a) and phase angle b)........................98 Figure 4.10: New actuator design.............................................................................................100 Figure 4.11: Quasi-static motion accumulation stepping sequence..........................................101 Figure 4.12: New hybrid clamp................................................................................................101 Figure 4.13: Hybrid clamp with structural compliance............................................................102 Figure 4.14: Four-quadrants of actuator operation...................................................................104 Figure 4.15: Stepping sequence (intended motion and load have the same sense)..................105 Figure 4.16: Actuator stall resulting from upper wedges stepping too far...............................105 Figure 4.17: Forces in hybrid clamp.........................................................................................106 Figure 4.18: Design region where both first and second quadrant operation are achievable...107 Figure 4.19: Hybrid actuator design capable of achieving four-quadrant operation................109 Figure 4.20: Feed-screw actuator design..................................................................................110 Figure 4.21: Hybrid actuator prototype published in 2002 by Singapore research group........111 Figure 5.1: Initial hybrid actuator prototype.............................................................................114 Figure 5.2: Torque a) and power b) versus speed performance plots.......................................115 Figure 5.3: Unsuccessful initial feed-screw piezoelectric actuator..........................................116 Figure 5.4: Ball screw prototype actuator.................................................................................117 Figure 5.5: Lockheed morphing wing concept ........................................................................119 Figure 5.6: Structural design of the folding wing UCAV .......................................................120 Figure 5.7: Lockheed’s ¼ scale remote control model of the morphing UCAV .....................121 Figure 5.8: The leading edge flap design envelope..................................................................122 Figure 5.9: Model speed versus load performance predictions for feed-screw actuator..........123 Figure 5.10: Cross-section of LEF feed-screw actuator design................................................125 Figure 5.11: Piezomechanik cylindrical piezoelectric stack actuator.......................................128 Figure 5.12: Qortek power supply for driving Piezomechanik stack.......................................129 Figure 5.13: Bayside bias torque motor and custom fabricated bearing support bushings......130 Figure 5.14: US Digital optical encoder disc and head............................................................131 Figure 5.15: Bayside standard brushless DC motor controller.................................................132 Figure 5.16: Feed-screw actuator assembly..............................................................................134 Figure 5.17: Assembled LEF feed-screw actuator...................................................................136 ix Figure 5.18: Bias motor power electronics and control circuit................................................137 Figure 5.19: MPC actuator test bed..........................................................................................138 Figure 5.20: Feed-screw actuator test apparatus.......................................................................139 Figure 5.21: LEF actuator load a) and power b) versus speed performance............................141 Figure 5.22: Roller thrust bearing and race .............................................................................145 Figure 5.23: Load versus speed performance plots with thrust bearings .................................146 Figure 5.24: Shinsei ultrasonic bias torque motor assembly with torsion spring couplers......148 Figure 5.25: Feed-screw actuator with integrated thrust bearings and Shinsei motors............148 Figure 5.26: Load versus speed with thrust bearings and Shinsei motors................................149 Figure 5.27: LEF actuator power versus frequency relationship.............................................151 Figure 5.28: Influence of relative nut positions on power output.............................................152 Figure 5.29: Conventional screw compared to MPC’s precision screw...................................153 Figure 5.30: Side load added to actuator to determine robustness of actuator.........................154 Figure 6.1: Dynamic model of hybrid actuator........................................................................159 Figure 6.2: Asperity representation and height probability distribution...................................163 Figure 6.3: Two-stiffness approximation model......................................................................166 Figure 6.4: Elastic bristle (asperity) model for sliding of surfaces...........................................167 Figure 6.5: Example Dahl friction behavior.............................................................................168 Figure 6.6: Stribeck velocity dependence of friction force......................................................168 Figure 6.7: General behavior of friction with constant velocity and starting from rest...........170 Figure 6.8: Simulink model of actuator....................................................................................174 Figure 6.9: Example equation of motion for screw..................................................................175 Figure 6.10: Simulation and experimental force a) and power b) versus speed plots.............178 Figure 6.11: Simulated time trace of screw and nut displacement...........................................179 Figure 6.12: Parameter study plots...........................................................................................181 Figure 6.13: Simulated annealing algorithm............................................................................183 Figure 6.14: Step multiplication factor versus acceptance ratio...............................................186 Figure 6.15: Original LEF actuator a) and design optimized actuator b).................................190 Figure 6.16: Force versus speed a) and power versus speed b) performance plots..................191 Figure 6.17: Optimized piezoelectric actuator compared to electromagnetic actuators...........197 Figure A.1: Actuator housing assembly..................................................................................207 Figure A.2: Actuator housing top cap......................................................................................208 Figure A.3: Stack cap..............................................................................................................209 Figure A.4: Actuator housing..................................................................................................210 Figure A.5: Actuator housing bottom cap...............................................................................211 Figure A.6: Actuator feed-screw.............................................................................................212 Figure A.7: Feed-screw nuts....................................................................................................213 Figure A.8: Nut support plate..................................................................................................214 Figure A.9: Lower rotor bearing bushing................................................................................215 Figure A.10: Upper rotor bearing bushing..............................................................................216 Figure B.1: Simulink top-level model simulation diagram......................................................217 Figure B.2: Input block.............................................................................................................218 Figure B.3: Housing EQM........................................................................................................219 Figure B.4: Holding Nut EQM.................................................................................................220 Figure B.5: Holding Screw EQM.............................................................................................221 x Figure B.6: Torque Motor EQM...............................................................................................222 Figure B.7: Driving Screw EQM..............................................................................................223 Figure B.8: Driving Nut EQM..................................................................................................224 Figure B.9: Stack EQM............................................................................................................225 Figure B.10: Holding Screw Friction Model............................................................................226 Figure B.11: Holding Screw Contact Stiffness Model.............................................................227 Figure B.12: Output Block.......................................................................................................228 Figure B.13: Driving Screw Contact Stiffness Model..............................................................229 Figure B.14: Driving Screw Friction Model.............................................................................230

Description:
Engineering. *Signatures are on file in the Graduate School specific power density actuator concept based on exploiting the high energy density.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.