ebook img

Development of a lateral migration radiography image generation and object recognition system PDF

107 Pages·1997·3.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of a lateral migration radiography image generation and object recognition system

DEVELOPMENTOFALATERALMIGRATIONRADIOGRAPHY IMAGEGENERATIONANDOBJECTRECOGNITIONSYSTEM By JOSEPHCORNELISWEHLBURG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1997 Thisdissertationisdedicatedtomyparents Dr. andMrs. Wehlburg,mywife ChristineandmydaughterRachel. ACKNOWLEDGMENTS The author expresses his appreciation for the guidance and financial support providedbyhisacademicadvisor,Dr.AlanJacobs. Theauthorisadditionallyindebted totherestofhisPh.D.committee,Dr.EdwardDugan,Dr.SamimAnghaie,Dr.Andrew LaineandDr.MartinValaforthesupportandencouragement. Theauthorwouldalso liketothankDanEkdahlforallhishelpwiththeelectronics TheauthorthankstheU.S. ArmyCECOMNightVisionandElectronicSensorDirectorateforprovidingfinancial supportforconductingthisresearch. TheauthorexpressesspecialthankstoDr.ShyamKeshavmurthyforallthehelp thathegaveduringthecourseoftheproject. Finally,theauthorwouldliketoacknowledgethatthisdissertationwouldnot have been completed without his wife, Christine, and all her editorial guidance, understandingandsupport. iii TABLEOFCONTENTS page ACKNOWLEDGMENTS iii ABSTRACT vi CHAPTERS INTRODUCTION 1 1 2 CONFIGURATIONFORTHELATERALMIGRATION RADIOGRAPHYSYSTEM 6 TheX-rayMachine 6 TheSoilbox 10 TheMotionControlandDataAcquisitionSystem 10 TheDetectorSystem 13 PreviousDetectorDesigns 13 NewDetectorDesign 16 DetectorSizeVariation 18 CurrentDetectorConfiguration 22 SignalProcessing 22 3 RESULTSANDDISCUSSION 26 ImageProcessing 26 Filtering 26 SurfaceFeatureIdentification 26 BuriedFeatureIdentification 32 DepthofBurial 37 DetectorHeightVariations 40 SurfaceVariations 47 ResolutionImprovement 50 PatternRecognition 57 4 CONCLUSIONS 67 iv APPENDICES A CODEFORTHEMOTIONCONTROLANDDATA ACQUISITIONSYSTEM 72 B SURFACEFEATUREDETECTIONCODE 78 C BURIEDFEATUREDETECTIONCODE 85 DPATTERNRECOGNITIONCODE 93 LISTOFREFERENCES 96 BIOGRAPHICALSKETCH 98 v AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy DEVELOPMENTOFALATERALMIGRATIONRADIOGRAPHYIMAGE GENERATIONANDOBJECTRECOGNITIONSYSTEM By JosephCornellsWehlburg May1997 Chairman: AlanM.Jacobs MajorDepartment: NuclearandRadiologicalEngineeringSciences Compton Backscatter Imaging (CBI) has always been impeded by inefficient sensingofinformationcarryingphotons,andextensivestructurednoiseduetoobject surfacefeaturesandheterogeneity. Inthisresearchproject,anewvariantofCBI,which substantiallyresolvesbothimpediments,issuggested,developedandrigorouslytestedby application to a difficult imaging problem. The new approach is termed Lateral MigrationRadiography(LMR)whichaptlydescribesthespecificphotonhistoryprocess givingrisetoresultingimagecontrast. Thephotonsemployedinthisresearchareconventionallygeneratedxrays. A pencil x-ray beam with a typical filtered-bremsstrahlung photon energy spectrum is perpendicularlyincidentupon,andsystematicallyrasteredover,theobjecttobeimaged. Efficientsensingofinformation-carryingphotonsisachievedbyemployinglarge-area detectorswithsensitiveplanesperpendiculartotheincidentbeam. Ageometricarrayof vi a group of such detectors along with varying degrees of detector collimation to discriminatesingly-scatteredfrommultiple-scattered,detectedxraysisdeveloped. The directoutputofthedetector-arraycomponents isalgebraicallycombinedtoeliminate imagecloakingbysurfacefeaturesandheterogeneity. Imagecontrastisgeneratedbythe variation of x-ray interaction probabilities in the internal details relative to the surroundingmaterial. ThesemajorimprovementstoconventionalCBIhaveallowedthe detectionofinternalswithclaritysuchthatrecognitionoftheinternalfeaturesviathe imagedetailsispossibleincaseswhereordinaryCBIcannotevendetectthepresenceof theinternalstructure. The test application is the detection and recognition of all-plastic antitank landminesburiedinsoilatdepthsofuptothreeinches. Inthemilitaryapplicationof clearing 12 inchdiametermines from 14-foot-wide tank-lanes, the spatial resolution requirementofoneinchandthespeedof3to5mphoverroughterrainandclutteredsoil surfaces presents a formidable detection and recognition problem. This application requiresspecialx-raygenerators,whichareunderdevelopmentelsewhere. Thisresearch projectclearlydemonstratesthat,givenasatisfactoryx-raygenerator,LMRprovidesa viablelandmineimageformationandrecognitiontechnique. Potentialapplicationofthe new LMR technique to general non-destructive inspection (NDI) problems are also discussed. vii CHAPTER 1 INTRODUCTION LateralMigrationRadiography(LMR)1,2,3'4'5 isaformofComptonBackscatter Imaging(CBI). Comptonscatteringoccurswhenaphotoninteractswithanelectronand transfersenergytotheelectronbykinematiclaws.6 Forthematerialsthatareofinterest for the example studied, landmine detection, the Compton effect dominates. The backscattermodalityhastheadvantageofnotrequiringadetectorbehindtheobjectbeing imaged,allowingnon-intrusiveimaging. Somecurrentlymarketedsystemsthatemploy thebackscattermodalityareComptonx-raybackscatterinspectionsystem(ComScan)7 andDynamicRadiography.8 OneofthelimitsofCBIsystemsisinefficientdetectionofinformationcarrying photons. ThedetectionabilityofCBIsystemsisalsoimpairedbythepresenceofsurface featuresandheterogeneitywhichcausestructurednoisetoappearintheimages. This researchfocusedondevelopingasystemwhichwouldremovemanyofthelimitations fromtheCBIsystem. TheproblemsinherentinCBIsystemsthatwereaddressedare: separationofsurfaceandsubsurfacefeatures,detectionefficiency,anddetector-to-target distancevariations(detectorheightvariation). Othertopicsthatwereinvestigatedduring thisresearchare:imageresolution,detectordesign,andpatternrecognition. Lateral migration for this project is the motion ofphotons transverse to the incidentbeamthroughobjects. Photonsthatundergolateralmigrationandaredetected mustexperiencemorethanonecollision. Inordertodetectphotonsthatundergolateral 1 2 migration,collimateddetectorsmustbeused. Thecollimatorspreventphotonsthathave onlyundergoneonecollisionfromreachingthedetectorsshieldedbythecollimators. Conventional CBIsystemsusedonlytwocollimateddetectors.9 Sincephotonsthathave experienced lateral migrations containinformationaboutobjectsbelowthe surface it seemsthatonlycollimateddetectorswouldberequiredtoidentifysubsurfacefeatures. Theproblemwiththisconclusionisthephoton'spathisinfluencedbysurfacefeaturesthe photonpassedthrough. Thismeans thatthe collimated detectors' response contains informationaboutthesurfaceofanobjectmixedinwiththesubsurfaceinformation. In orderto separate surface from subsurface feature information, uncollimateddetectors wereadded. Photonsthathitthesurfaceandscatterbackcanbeefficientlydetectedbyan uncollimateddetectorplacednearthex-raysource. Thiscombinationofcollimatedand uncollimateddetectorsallowssubsurfaceobjectstobeseparatedfromsurfaceobjects. In the energy range of 10 keV to 10 MeV there are three possible photon interactions: Compton scatter (incoherent scatter), the photoelectric effect, and pair production.6 TheenergyrangeinwhichtheLMRsystemoperates,whenappliedtothe problemthatwasusedtoevaluateit,landminedetection,iswellbelowthe1.02MeVthat isrequiredforpairproduction. This makestheonly interactions ofinterestforthis applicationComptonscatteringandthephotoelectriceffect. TheLMRsystemrespondstochangesintheComptonscatteringcrosssection(as) andthephotoelectric effectcross section(aa)inthetargetmedium. To identifythe behavioroftheLMRsystemallthephotonscreatedbyinteractionsmustbeaccounted for,evenonesthatoccuraftertheprimaryeffectsoftheinteraction. Afteraphotoelectric 3 interactionaphotonisemittedwhenanelectronisabsorbedbackintothecreatedvacancy (phosphorescence). Thephosphorescencephotonhasaverysmallprobabilityofreaching thedetector,sothephotoelectriceffectactsasanabsorptionprocessforLMRsystems. Table1givesalistofphosphorescence(K-edge)energiesforsomeelementsthatareof interesttothelandminedetectionsystem. Typicalenergiesthatcanreachthedetectorare ontheorderof20keVorgreaterforthecurrentsystemasappliedtolandminedetection. Table1. Phosphorescenceenergyforsomeoftheelementsofinterestinlandmine detection Element H C N O Si Fe Z 1.00 6.00 7.00 8.00 14.00 26.00 K-edgeenergy 0.01 0.28 0.40 0.53 1.84 7.11 keV Source:Attix Lateral migration occurs in all objects, surface orburied, high or lowas/cra. Lateralmigrationonlyplaysasignificantrolewhenmaterialshaveareasonablydifferent as/o-arelativetothesurroundingmediaandareimagedwithcollimateddetectors. An objectwithahighas/aaallowsmorephotonstosurviveiftheytravelthroughtheobject insteadofthroughthesurroundingmedia. Themigrationeffectyieldsanincreaseinthe collimateddetectorresponsewhenthe source is overaburiedobjectthatallowsthe photontohaveagreaterdistanceoftravelintheobjectthaninthesurroundingmedium. Table2showscalculatedMonteCarlon-particle(MCNP)simulationresultsfor theenergydepositionofdifferentcollisioncomponentsforthecollimateddetectors.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.