ebook img

Development Of A Cyber Physical System For Fire Safety PDF

77 Pages·2016·5.385 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development Of A Cyber Physical System For Fire Safety

SPRINGER BRIEFS IN FIRE Rosalie Faith Wills André Marshall Development of a Cyber Physical System for Fire Safety 123 SpringerBriefs in Fire Series Editor James A. Milke Department of Fire Protection Engineering University of Maryland College Park, Maryland, USA More information about this series at h ttp://www.springer.com/series/10476 Rosalie Faith Wills • André Marshall Development of a Cyber Physical System for Fire Safety Rosalie Faith Wills André Marshall Arup University of Maryland Washington , DC , USA College Park , MD , USA ISSN 2193-6595 ISSN 2193-6609 (electronic) SpringerBriefs in Fire ISBN 978-3-319-47123-5 ISBN 978-3-319-47124-2 (eBook) DOI 10.1007/978-3-319-47124-2 Library of Congress Control Number: 2016953851 © The Author(s) 2016 T his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. T he use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. T he publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland I would like to dedicate this report to my parents, Sarah and Joe Wills, for their lasting love and support for me and for my aspirations. Acknowledgements T he Chief Donald J. Burns Memorial Grant provided by the Society of Fire Protection Engineers and funded by Bentley Systems supported this research. Siemens provided equipment and resources such as a customized Fire Alarm Control Panel. The Maryland Fire and Rescue Institute provided resources and facilities to accomplish full-scale fi re testing. Dr. Darryl Pines, Dean of the Clark School of Engineering, provided seed funding in support of this research. I would like to thank my thesis advisor, Professor André Marshall, for his sup- port and guidance throughout the duration of this project. I appreciate his ability to envision the future goals of the project while also providing clear guidance on cur- rent specifi c tasks. I would also like to thank Professor Arnaud Trouvé and Professor Stanislav Stoliarov for being on my committee and providing me valuable guidance. None of this would have been possible without the support of Professor Jim Milke for the past 5 years. I sincerely thank him for his genuine encouragement, insightful advice, and great sense of humor. vii Contents 1 Introduction ............................................................................................... 1 1.1 Motivation .......................................................................................... 1 1.1.1 Modern Fire Safety Challenges ............................................. 2 1.1.2 Modern Infrastructure and Technology Opportunities........... 3 1.1.3 Cyber Physical Systems ......................................................... 5 1.2 Literature Review ............................................................................... 6 1.2.1 Inverse Fire Model Development ........................................... 7 1.2.2 BIM Utilization Concepts ...................................................... 8 1.3 Project Focus ...................................................................................... 11 1.3.1 Objectives ............................................................................... 11 1.3.2 Scope ...................................................................................... 11 2 Approach.................................................................................................... 13 2.1 Physical Environment ........................................................................ 13 2.1.1 Testing Facility ....................................................................... 14 2.1.2 Sensor Selection and Instrumentation .................................... 16 2.1.3 Laboratory Sensors ................................................................ 20 2.1.4 Fuel Package Location ........................................................... 21 2.1.5 Fuel Package and Ventilation Conditions .............................. 21 2.1.6 Experimental Methods ........................................................... 25 2.2 Virtual Environment ........................................................................... 26 2.2.1 Program Selection .................................................................. 26 2.2.2 Program Information Organization ........................................ 27 2.2.3 MFRI Structural Fire Fighting Building Data Collection ...................................................................... 28 2.2.4 MFRI Structural Fire Fighting Building Data Transformation .............................................................. 29 2.2.5 Static and Dynamic Data Transformation to Information ........................................................................ 30 ix x Contents 3 Results ........................................................................................................ 33 3.1 Timeline ............................................................................................. 34 3.1.1 Crib Timeline (Small Fire) ..................................................... 34 3.1.2 Pallet Timeline (Large Fire) ................................................... 36 3.1.3 Timeline Details ..................................................................... 36 3.2 Test Measurements ............................................................................. 37 3.2.1 Siemens Smoke Obscuration ................................................. 37 3.2.2 Siemens Temperature Readings ............................................. 38 3.2.3 Thermocouple Temperature ................................................... 41 3.2.4 Mass Loss Rate ...................................................................... 45 3.2.5 System Limitations ................................................................ 45 3.2.6 Inverse Fire Modeling Validation Data .................................. 46 3.3 Real-Time Cyber Physical System Framework ................................. 47 3.3.1 Real-Time Critical Fire Information Visualization ................ 47 3.4 Conclusions ........................................................................................ 50 3.5 Future Work ....................................................................................... 50 Appendix .......................................................................................................... 53 Bibliography .................................................................................................... 67 List of Figures Fig. 1.1 Sensors and utilities within a modern sustainable structure .......... 3 Fig. 1.2 Fire alarm annunciator ................................................................... 4 Fig. 1.3 Multidiscipline features of BIM ..................................................... 5 Fig. 1.4 Examples of incident command tactical system ............................ 10 Fig. 1.5 Example of intelligent building response interface ........................ 11 Fig. 1.6 Cyber physical system for fi re safety ............................................. 12 Fig. 2.1 MFRI structural fi re fi ghting building ............................................ 15 Fig. 2.2 Customized Siemens fi re safety system—fi re alarm control panel ................................................................................... 17 Fig. 2.3 MFRI structural fi re fi ghting building fi rst fl oor ............................ 18 Fig. 2.4 MFRI structural fi re fi ghting building second fl oor ....................... 19 Fig. 2.5 MFRI structural fi re fi ghting building third fl oor. .......................... 19 Fig. 2.6 MFRI structural fi re fi ghting building fourth fl oor ........................ 20 Fig. 2.7 Transformation of BIM File PyroSim to FDS File ........................ 22 Fig. 2.8 Temperature Slice File for Case 1, Door 2 Open ........................... 23 Fig. 2.9 Temperature Slice File for Case 1, Door 2 Closed ........................ 23 Fig. 2.10 Wood crib confi guration. ................................................................ 24 Fig. 2.11 Triangle pallet confi guration .......................................................... 25 Fig. 2.12 HRR curves of triangular fuel packages ........................................ 28 Fig. 2.13 HRR curve of small triangular fuel package .................................. 28 Fig. 2.14 Comparison of building photograph and comprehensive BIM ...... 29 Fig. 3.1 Timeline of crib test (small fuel) .................................................... 35 Fig. 3.2 Timeline of pallet test (large fuel) .................................................. 35 Fig. 3.3 Beginning timeline of crib test (small fuel) ................................... 36 Fig. 3.4 Beginning timeline of pallet test (large fuel) ................................. 37 Fig. 3.5 Smoke obscuration of crib test (small fuel) ................................... 38 Fig. 3.6 Smoke obscuration of pallet test (large fuel) ................................. 38 Fig. 3.7 Siemens temperature of crib test (small fuel) ................................ 39 Fig. 3.8 Siemens temperature of pallet test (large fuel) .............................. 39 xi xii List of Figures Fig. 3.9 Siemens temperature and thermocouple temperature at locations A and B of crib test (small fuel) ................................. 40 Fig. 3.10 Siemens temperature and thermocouple temperature at locations A and B of pallet test (large fuel) ............................... 40 Fig. 3.11 Raw thermocouple temperature of crib test (small fuel). ............... 41 Fig. 3.12 Raw thermocouple temperature of pallet test (large fuel) .............. 41 Fig. 3.13 Raw thermocouple temperature of two crib tests; location A (Red); B (Blue); C (Green); D (Purple); E (Orange); Trial 1(Light); Trial 2 (Dark) ..................................... 42 Fig. 3.14 Thermocouple tree temperature of location D of crib test ............. 42 Fig. 3.15 Thermocouple tree temperature of location E of crib test ............. 43 Fig. 3.16 Thermocouple tree temperature of location D of pallet test .......... 44 Fig. 3.17 Thermocouple tree temperature of location E of pallet test ........... 44 Fig. 3.18 Mass burning rate of crib test (small fuel) ..................................... 45 Fig. 3.19 Visualization of building and fi re environment .............................. 48 Fig. 3.20 Visualization of test bed fi re environment ..................................... 48 Fig. A.1. New padgenite insulating panels on fi rst fl oor ............................... 54 Fig. A.2. Metal free swinging window with manual latch ............................ 55 Fig. A.3. Metal grate stairs with metal handrails .......................................... 55 Fig. A.4. Temporary sensor instrumentation ................................................. 56 Fig. A.5. Temporary thermocouple tree instrumentation .............................. 56 Fig. A.6. Oxygen cone-calorimeter test of the MFRI fuel package by NIST test ................................................................................... 59 Fig. A.7. Various pallets used for testing ...................................................... 59 Fig. A.8. Cut pallets used for testing ............................................................. 60 Fig. A.9. Temperature and smoke obscuration data request ......................... 60 Fig. A.10. Temperature data output from Siemens system ............................. 61 Fig. A.11. Smoke obscuration data output from Siemens system .................. 61 Fig. A.12. Security switch data output from Siemens system ........................ 62 Fig. A.13. Siemens smoke detector fi le ........................................................... 62

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.