ebook img

Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles PDF

187 Pages·2017·6.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles

WWrriigghhtt SSttaattee UUnniivveerrssiittyy CCOORREE SScchhoollaarr Browse all Theses and Dissertations Theses and Dissertations 2016 DDeevveellooppmmeenntt,, DDeessiiggnn,, MMaannuuffaaccttuurree aanndd TTeesstt ooff FFllaappppiinngg WWiinngg MMiiccrroo AAeerriiaall VVeehhiicclleess Todd J. Smith Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Engineering Commons RReeppoossiittoorryy CCiittaattiioonn Smith, Todd J., "Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles" (2016). Browse all Theses and Dissertations. 1695. https://corescholar.libraries.wright.edu/etd_all/1695 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by TODD J. SMITH B.S.M.E., Wright State University, 2010 M.S.Egr., Wright State University, 2013 2016 WRIGHT STATE UNIVERSITY WRIGHTSTATEUNIVERSITY GRADUATESCHOOL November22,2016 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Todd J. Smith ENTITLED Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles BE ACCEPTED IN PARTIAL FULFILL- MENTOFTHEREQUIREMENTSFORTHEDEGREEOFDoctorofPhilosophy. GeorgeHuang,Ph.D.,P.E. DissertationDirector FrankW.Ciarallo,Ph.D. Director,Ph.D.inEngineeringProgram RobertE.W.Fyffe,Ph.D. VicePresidentforResearchand DeanoftheGraduateSchool Committeeon FinalExamination GeorgeHuang,Ph.D.,P.E. JamesMenart,Ph.D. ZifengYang,Ph.D. RichardCobb,Ph.D. MichaelOppenheimer,Ph.D. ABSTRACT Smith,ToddJ.,Ph.D.,EngineeringPh.D.Program,DepartmentofMechanicalandMaterialsEngi- neering, Wright State University, 2016. Development, Design, Manufacture and Test of Flapping WingMicroAerialVehicles. ThefieldofFlappingWingMicroAirVehicles(FWMAV)hasbeenofinterestinrecent yearsandasshowntohavemanyaerodynamicprinciplesunconventionaltotraditionalavi- ation aerodynamics. In addition to traditional manufacturing techniques, MAVs have uti- lizedtechniquesandmachinesthathavegainedsignificantinterestandinvestmentoverthe past decade, namely in additive manufacturing. This dissertation discusses the techniques usedtomanufactureandbuilda30gram-force(gf)modelwhichapproachesthelowerlimit allowedbycurrentcommercialoff-the-shelfitems. Thevehicleutilizesanovelmechanism that minimizes traditional kinematic issues associated with four bar mechanisms for flap- ping wing vehicles. A kinematic reasoning for large amplitude flapping is demonstrated namely, by lowering the cycle averaged angular acceleration of the wings. The vehicle is tested for control authority and lift of the mechanism using three servo drives for wing manipulation. The study then discusses the wing design, manufacturing techniques and limitations involved with the wings for a FWMAV. A set of 17 different wings are tested for lift reaching lifts of 38 gf using the aforementioned vehicle design. The variation in wings spurs the investigation of the flow patterns generated by the flexible wings and its interactionsformultipleflappingamplitudes. Phase-lockparticleimagevelocimetry(PIV) is used to investigate the unsteady flows generated by the vehicle. A novel flow pattern is experimentally found, namely “trailing edge vortex capture” upon wing reversal for all three flapping amplitudes, alluding to a newly discovered addition to the lift enhancing ef- fectofwakecapture. Thiseffectisbelievedtobearesultofflexiblewingsandmayprovide liftenhancingcharacteristicstowakecapture. iii List of Symbols α AngleofAttack β ControlMechanismAngle C CoefficientofLift L C CoefficientofDrag D δ LeftWingControlInput LW δ RightWingControlInput RW F VerticalForce x F SpanwiseorSideForce y F AxialForce z ¯ F CycleAveragedVerticalForce x ¯ F CycleAveragedSpanwiseorSideForce y ¯ F CycleAveragedAxialForce z γ FlappingPlaneAngle I WingSecondMomentofArea A M YawMoment x M PitchMoment y M RollMoment z ¯ M CycleAveragedYawMoment x ¯ M CycleAveragedPitchMoment y ¯ M CycleAveragedRollMoment z ρ DensityofAir φ WingPosition ˙ φ WingAnglularVelocity ¨ φ WingAnglularAcceleration ω FlappingFrequency iv Contents 1 INTRODUCTION 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 FixedWingFlight . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 RotorCraftFlight . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 FlappingWingFlight . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.4 FlightinNature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.5 InsectWingInvestigations . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 OriginalContributionsandOrganizationofDissertation . . . . . . . . . . . 18 2 DESIGNPRINCIPLES 20 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Electro-MechanicalActuation . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 PowerSources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 TransmittersandReceivers . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 GearingandPowerTransmission . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 BasicBuildingMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7 Four-BarMechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 ComputerAidedDesign(CAD) . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 DESIGN 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 EvolutionofaHorizontalFlapper . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 AchievingLargeFlappingAngles . . . . . . . . . . . . . . . . . . 37 3.3.2 VehicleKinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.3 PitchControllable180DegreeAmplitudeFlapper . . . . . . . . . 45 3.3.4 Version2LiftOff . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.5 MechanicalDesign . . . . . . . . . . . . . . . . . . . . . . . . . . 48 v 3.3.6 TakingControl: AdditionofIndependentAngleofAttackControl . 56 3.3.7 TakingControl: AdditionofRollControl . . . . . . . . . . . . . . 67 3.3.8 CollaborationwithAFRL:CombiningNovelDriveMechanismwith SplitCycleControlScheme . . . . . . . . . . . . . . . . . . . . . 70 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 WINGDEVELOPMENT 73 4.1 LearningFromNature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 CoalescedWingDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 WingDesignandManufacture . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 SizingandStiffnessConsiderations . . . . . . . . . . . . . . . . . . . . . 79 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 EXPERIMENTALTESTING 81 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 LoadCellTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.1 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.3 ExperimentalConclusions . . . . . . . . . . . . . . . . . . . . . . 98 5.3 Phase-LockParticleImageVelocimetry(PIV) . . . . . . . . . . . . . . . . 99 5.3.1 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.3 ExperimentalConclusions . . . . . . . . . . . . . . . . . . . . . . 141 6 CONCLUSION 142 6.1 ResearchContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 RecommendationsforFutureWork . . . . . . . . . . . . . . . . . . . . . . 144 Bibliography 145 A AppendixA 154 A.1 WingAOATrackingPlots . . . . . . . . . . . . . . . . . . . . . . . . . . 154 A.2 WingVelocityPlots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 B AppendixB 167 B.1 Four-BarMATLABCode . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 vi List of Figures 1.1 FixedWingMicroAirVehicles . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 MicroHelicopters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 QuadrotorPlatforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 HarvardRoboBeeandWing,fromRef[34] . . . . . . . . . . . . . . . . . 8 1.5 CicadaWingTipPath,fromWan[55] . . . . . . . . . . . . . . . . . . . . 13 2.1 ElectromagneticActuators . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 BladeCorelessMotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 ServoActuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 10mAhFullRiverBattery [4] . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 MetalGearTrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 TypesofFourBarLinkages[75] . . . . . . . . . . . . . . . . . . . . . . . 30 3.1 LadybugFlappingCycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 RockerLinkageDrivestheWingsStrokeRotation[77] . . . . . . . . . . . 37 3.3 ConceptualSketchofMechanism . . . . . . . . . . . . . . . . . . . . . . 38 3.4 DoubleSidedBevelGearSets . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 FourBarLinkageIncrementalGeometry . . . . . . . . . . . . . . . . . . . 41 3.6 MechanismKinematics,CrankAnglevs. NormalizedWingAngle . . . . . 42 3.7 AngularVelocityandAccelerationofRockerArm . . . . . . . . . . . . . 42 3.8 NormalizedAngularPositionofLargerAmplitudeMechanisms . . . . . . 43 3.9 Normalized Absolute Value Angular Velocity of Larger Amplitude Mech- anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.10 Normalized Absolute Value Angular Acceleration of Larger Amplitude Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.11 MechanismKinematicsforFlappingAmplitudesandFrequencies . . . . . 45 3.12 Version1ofHorizontalFlapper . . . . . . . . . . . . . . . . . . . . . . . 46 3.13 SnapshotsofHighSpeedVideoofTetheredFlight . . . . . . . . . . . . . . 48 3.14 HorizontalFlapperDimensions . . . . . . . . . . . . . . . . . . . . . . . . 49 3.15 IsometricSectionedViewofHorizontalFlapper . . . . . . . . . . . . . . . 50 3.16 FlapperGearTrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.17 FlapperGearTrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.18 BevelGearSetDimension,SideView . . . . . . . . . . . . . . . . . . . . 53 vii 3.19 BevelGearSetDimension,TopView . . . . . . . . . . . . . . . . . . . . 53 3.20 224ToothGear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.21 224ToothSectorGear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.22 20ToothGear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.23 20toothsectorgear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.24 CADModelDemonstrating180DegreesofFlapping . . . . . . . . . . . . 58 3.25 AngleofAttackcontrolledFlapperonaNano-17LoadCell . . . . . . . . 59 3.26 AngleofAttackControlConcept . . . . . . . . . . . . . . . . . . . . . . . 59 3.27 AngleofAttackControlCAD . . . . . . . . . . . . . . . . . . . . . . . . 60 3.28 AngleofAttackPlottedonWingAnglevs. ControlAngle(Idealized) . . . 61 3.29 CADofModifiedAngleofAttackControlMechanism . . . . . . . . . . . 61 3.30 ModifiedAngleofAttackControlMechanism . . . . . . . . . . . . . . . . 62 3.31 VehicleCoordinateSystem . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.32 SimulatedZ-DirectionTrimResults . . . . . . . . . . . . . . . . . . . . . 66 3.33 SimulatedTrimandNon-TrimM Moment . . . . . . . . . . . . . . . . . 66 y 3.34 WingLiftReductionduetoWingBending . . . . . . . . . . . . . . . . . . 68 3.35 RollControlModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.36 RollControlServo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.37 RollControlTrimAdjustment . . . . . . . . . . . . . . . . . . . . . . . . 70 3.38 TwoMotorDesignwithFullAluminumChassisandGears[79] . . . . . . 72 4.1 Comstock-NeedhamSystem[80] . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 InsectWingDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 CoalescedWingDesign[66] . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 WingLayupandCure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 AOAAdjustmentVehicleLoadCellResults . . . . . . . . . . . . . . . . . 85 5.2 StobeLightFoamWingat3V . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 WingLiftTestingResults[83] . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Wing2DAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5 Wing2EAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.6 Wing2FAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Wing2HAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.8 Phase-LockPIVSchematic . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.9 MechanismKinematicsforFlappingAmplitudesandFrequencies . . . . . 103 5.10 PIVWingLocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.11 PIVWingLocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.12 PIV30◦ in180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 106 5.13 PIV15◦ in180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 107 5.14 PIV0◦ in180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . . 108 5.15 PIV0◦ out180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 109 5.16 PIV15◦ out180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 110 5.17 PIV30◦ out180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 111 5.18 PIV35◦ out180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 112 5.19 PIV45◦ out180AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 113 viii 5.20 PIV180AmplitudeQuiverPlot . . . . . . . . . . . . . . . . . . . . . . . 114 5.21 PIV30◦ in150AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 115 5.22 PIV15◦ in150AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 116 5.23 PIV0◦ in150AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . . 117 5.24 PIV0◦ out150AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 118 5.25 PIV15◦ out150AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 119 5.26 PIV30◦ out150AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 120 5.27 PIV150AmplitudeQuiverPlot . . . . . . . . . . . . . . . . . . . . . . . 121 5.28 PIV30◦ in120AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 122 5.29 PIV15◦ in120AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 123 5.30 PIV0◦ in120AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . . 124 5.31 PIV0◦ out120AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 125 5.32 PIV15◦ out120AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 126 5.33 PIV30◦ out120AmplitudeVorticity . . . . . . . . . . . . . . . . . . . . . 127 5.34 PIV120AmplitudeQuiverPlot . . . . . . . . . . . . . . . . . . . . . . . 128 5.35 PIV180AmplitudeYVelocity . . . . . . . . . . . . . . . . . . . . . . . . 130 5.36 PIV150AmplitudeYVelocity . . . . . . . . . . . . . . . . . . . . . . . . 131 5.37 PIV120AmplitudeYVelocity . . . . . . . . . . . . . . . . . . . . . . . . 132 5.38 WingPositionsatMid-Stroke . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.39 PIVMid-Stroke180AmplitudeVorticity . . . . . . . . . . . . . . . . . . 135 5.40 PIVMid-Stroke150AmplitudeVorticity . . . . . . . . . . . . . . . . . . 136 5.41 PIVMid-Stroke120AmplitudeVorticity . . . . . . . . . . . . . . . . . . 137 5.42 PIVMid-Stroke180AmplitudeYVelocity . . . . . . . . . . . . . . . . . 138 5.43 PIVMid-Stroke150AmplitudeYVelocity . . . . . . . . . . . . . . . . . 139 5.44 PIVMid-Stroke120AmplitudeYVelocity . . . . . . . . . . . . . . . . . 140 A.1 Wing4EAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 A.2 Wing4FAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 A.3 Wing2GAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 A.4 Wing4GAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 A.5 Wing4HAOAMapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.6 PIV180AmplitudeXVelocity . . . . . . . . . . . . . . . . . . . . . . . . 161 A.7 PIV150AmplitudeXVelocity . . . . . . . . . . . . . . . . . . . . . . . . 162 A.8 PIV120AmplitudeXVelocity . . . . . . . . . . . . . . . . . . . . . . . . 163 A.9 PIVMid-Stroke180AmplitudeXVelocity . . . . . . . . . . . . . . . . . 164 A.10 PIVMid-Stroke150AmplitudeXVelocity . . . . . . . . . . . . . . . . . 165 A.11 PIVMid-Stroke120AmplitudeXVelocity . . . . . . . . . . . . . . . . . 166 ix

Description:
Fixed wing flight, on a small scale, has been an area of interest for .. Application of the flight principles found in nature to MAVs is necessary for the by the worm gear set when made from the 3D printed plastic EX200 on the 3D.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.