ebook img

Development, characterization, and modeling of CuGaSe2/Cu(In,Ga)Se2 thin-film tandem solar cells/: PDF

2006·5.1 MB·English
by  SongJiyon
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development, characterization, and modeling of CuGaSe2/Cu(In,Ga)Se2 thin-film tandem solar cells/:

DEVELOPMENT,CHARACTERIZATION,ANDMODELINGOF CuGaSe2/Cu(In,Ga)Se2THIN-FILMTANDEMSOLARCELLS By JIYONSONG ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2006 Copyright2006 by JiyonSong ACKNOWLEDGMENTS Iwouldliketoexpressmysinceregratitudetomysupervisorycommitteechair.Dr. Sheng S. Li, for his guidance, support, and knowledge during the course ofthis dissertation. IwouldalsoliketothankProfessorsGijsBosman,TimothyJ.Anderson, andPaulHollowayforservingonmysupervisorycommittee. I extend special thanksto Dr. Oscar D. Crisalle forhis helpful advice on my research;Dr.LeonChen,forsupplyingCIGSsamplesanddepositingofZnOlayers;Dr. RommelNoufi,forsupplyingCGSsamples;Dr.ValentinCraciun,forhishelponfilm characterization;andDr.JianChen,forhishelponHallmeasurement. IwouldliketoextendmysincereappreciationtoDr.SeokhyunYoonandWoo KyoungKimfortheirhelponfilmcharacterization;andmycolleagues,DrsXuegeWang andChia-HuaHuang,fortheirdiscussionsondevicecharacterizationandfabrication. I alsothankAndreBaran, RyanKaczynski,RyanAcher, Wei Liu,ChrisPeek, JihyunKim,YonghoChoi,JosephPark,ZivinPark,andDr.LeiL.Kerrfortheirhelp andassistance. Icouldnothaveaccomplishedthisworkwithouttheircooperationand help. The author gratefully acknowledges the collaborations with the National RenewableEnergyLaboratoryandEnergyPhotovoltaicsInc.thatprovidedtheCGSand CIGSsamples. FundingthroughtheNRELhigh-performancephotovoltaicprogramis gratefullyacknowledged. iii My deepest gratitude goes to my parents. I thankthem for encouraging and supportingmeinloveandtrust. Ithankmysisterandbrotherforalwaysgivingtheirbest tosupportme. Idedicatethisdissertationtothem. IV 1 TABLEOFCONTENTS page ACKNOWLEDGMENTS Hi LISTOFTABLES viii LISTOFFIGURES ix ABSTRACT xii CHAPTER 1 INTRODUCTION I 2 FUNDAMENTALSOFCIS-BASEDTHIN-FILMTANDEMSOLARCELLS 7 2.1 OverviewofSolarCellTechnologies 7 2.1.1 Introduction 7 2.1.2 CrystallineSiliconSolarCells 8 2.1.3 ThinFilmSolarCells 9 2.2 FundamentalSolarCellParameters 12 2.3 TandemSolarCellTechnologies 13 2.4 CuGaSe2TopCell 15 2.5 AlternativeTopCells 17 2.5.1 CuInS2TopCell 17 2.5.2 CuGa(Sx,Se,.x)2TopCell 18 2.6 AlternativeBufferLayersforWideBand-gapCuGaSe2TopCell 18 2.6.1 Cdi_xZnxSBufferLayers 19 2.6.2 ZnSeBufferLayers 20 2.6.3 Zn(Se,OH)BufferLayers 2 3 DEVICEMODELINGANDSIMULATIONOFCIGSANDCGSSOLAR CELLS 28 3.1 Introduction 28 3.2 AMPS-IDDeviceSimulationProgram 29 3.3 ModelingandSimulationofCIGSCells 30 3.3.1 CellStructureandMaterialParameters 30 3.3.2 TheEffectofCdSLayerThicknessontheCISCellPerformance 31 3.3.3 TheEffectofUniformAbsorberBand-gapontheCellPerformance 32 3.3.4 TheGradedBand-gapStructureofCIGSCells 32 v 3.3.5 ComparisonwithExperimentalDataforC1GSCells 33 3.4 ModelingandSimulationofCGSCells 36 33..44..21 CCeolmlpaStrriuscotunrewiatnhdEMxapteerriimaelntPaalraDmaettaerfsorCGSCells 3367 3.5 SummaryandConclusions 37 4 NUMERICALSIMULATIONOFMECHANICALLY-STACKEDCGS/CIGS TANDEMSOLARCELLS 52 4.1 Introduction 52 4.2 Mechanically-StackedCGS/CIGSTandemCellStructure 53 4.3 SimulationMethod 54 4.4 TheEffectofCGSTopCellThicknessonthePerformanceofCIGSBottom Cell 54 4.5 TheEffectofCGSAbsorberThicknessonthePerformanceofCGS/CIGS TandemCell 55 4.6 SummaryandConclusions 57 5 DEVELOPMENT,GROWTH,ANDCHARACTERIZATIONOFCHEMICAL- BATH-DEPOSITIONCDZNSBUFFERLAYERS 62 5.1 Introduction 62 5.2 DevelopmentandGrowthofCBD-CdZnSBufferLayers 63 5.2.1 ChemicalBathDepositionTechnique 63 5.2.2 ChemicalBathDepositionCondition 64 5.2.3 DefinitionoftheRelativeZincContentintheBufferFilmandinthe CBDSolution 65 5.3 CharacterizationofCBD-CdZnSThinFilms 65 5.3.1 ThicknessofCdZnSFilms 65 5.3.2 StructuralAnalysis 66 5.3.3 AnalysisofSurfaceMorphology 67 5.3.4 OpticalAnalysis 68 5.3.5 ElectricalAnalysis 69 5.4 SummaryandConclusions 70 6 F7.A1BRICATIONANDMEASUREMENTSYSTEMSFORCIGSANDCGS SOLARCELLS 82 6.1 Introduction 82 6.2 FabricationofCIGSandCGSSolarCells 82 6.3 TheCurrent-VoltageandSpectralResponseMeasurementSystems 83 6.3.1 Current-VoltageMeasurementSystem 83 6.3.2 SpectralResponseMeasurementSystem 84 7 CURRENT-VOLTAGEANDSPECTRALRESPONSE CHARACTERIZATIONSOFCIGSSOLARCELLSWITHCDZNSBUFFER LAYERS 90 Introduction 90 vi 88 7.2 TheEffectofCIGSAbsorberSurfaceTreatmentbyKCNontheCell Performance 91 7.3 Current-VoltageandQuantumEfficiencyofCIGSCellswithCdZnSBuffer Layers 92 7.3.1 TheEffectofBufferLayerThicknessontheCellPerformance 92 7.3.2 TheEffectofDifferentZnCompositionsofCdZnSBufferLayeron theCellPerformance 92 7.4 SummaryandConclusions 95 8 CURRENT-VOLTAGEANDSPECTRALRESPONSE CHARACTERIZATIONSOFCGSSOLARCELLSWITHCDZNSBUFFER LAYERS 105 8.1 Introduction 105 8.2 SurfaceMorphologyofaCGSFilmandaCdZnSFilmonCGS 107 8.3 Current-VoltageCharacteristicsandQuantumEfficiencyofCGSCellswith CdZnSBufferLayers 108 8.4 SummaryandConclusions Ill 9 SUMMARYANDFUTURESTUDIES 11 9.1 SummaryandConclusions 11 9.2 FutureStudies 119 LISTOFREFERENCES 123 BIOGRAPHICALSKETCH 130 vii 2- LISTOFTABLES 3- Table Egge 2-1. TheperformanceparametersofthebestCIS-basedsolarcells 23 2. TheperformanceparametersofCIS-basedthin-filmtandemsolarcells 25 1. MaterialparametersofC1GSbottomcell 40 3-2. SimulatedperformanceparametersoftheCIGSsolarcellswithadoubleband- gapgradingprofile 44 3-3. Theenergyband-gapprofileoftheCIGSabsorberlayerusedinsimulation 47 5-1. EstimatedenergybandgapsofCdZnSfilmsforvariousrelativeZncomposition values(x) 80 7- 58--2. Mfeorasasu-rdeedpovsailtueedsCodfZelneSctrfiiclamlsroensiIstTaOncceoa(Rt)e,drgelsaissstivsiutbyst(rpa)t,easnadscaonfduunccttiiovnitoyf(tah)e relativeZncompositonx 81 7-1. PerformanceofCdS/CIGScellswithandwithoutaKCNtreatmentoftheCIGS absorberlayers 96 7-2. PerformanceofCdZnS/CIGScellswithandwithoutaKCNtreatmentofthe CIGSabsorberlayers 98 7-3. PerformanceparametersofCdZnS/CIGScellsasafunctionofdifferent depositiontimesforarelativezinccompositionx=0.3inthebufferlayer 100 4. PerformanceparametersofCdZnS/CIGScellsasafunctionoftherelativezinc contentxofthebufferlayer 101 1. PterreaftomremnatnscoenotfhCedCSG/SCGaSbsaonrdbeCrdlZayneSr/sC(GASMIce,l5lsG,wi1t0h0amnWd/wcitmho2)utKCN 114 8-2. TheperformanceofCdS/CGSandCdZnS/CGScellswithKCNtreatmentson theCGSabsorberlayers(AM1.5G,100mW/crn") 117 vm LISTOFFIGURES Figure 2-1. Csoolnadruccetlilonandvalencebanddiagramforap-nheterojunctionZnO/CdS/CIGS 22 2-2. Two-junctionmonolithically-cascadedandmechanically-stackedtandemsolar cellstructures 24 2-3. Current-densityvoltage(J-V)characteristicsofasolarcellinthedarkand illuminated,definingthefundamentalsolarcellperformanceparameters:light- generatedcurrentdensity(JL),short-circuitcurrentdensity(Jsc),andopen-circuit voltage(Voc). Fillfactor(FF)isdeterminedbythemaximumrectanglegivenby JmandVm 26 2-4. BanddiagramswithincreasingGacontentoftheCuIni„xGaxSe2absorberlayer....27 3-1. Theschematicenergy-banddiagramofatypicalZnO/CdS/CIGSsolarcellunder equilibriumcondition 39 3-2. Thephoto-J-VcurvesforthesimulatedCIScellswithdifferentthicknessofCdS bufferlayerfor(a)30nm,(b)60nm,and(c)80nm 41 3-3. Sxi,mGualx)aStee2d(pEegr=for1.m1a0n,ce1.1p8a,raamnedte1r.s22oefVt)heceClulIsnwSietih(dEifgf=ere1n.t04uneiVf)oramndabCsu(olrnbie.r band-gapprofiles;(a)Voc,(b)Jsc,(c)FF,and(d)efficiency 42 3-4. Theschematicenergy-banddiagramofaCIGScellwithadoubleband-gap gradingprofileunderequilibriumcondition 43 3-5. Thephoto-J-Vcurvesforthesimulatedresults(solidanddashedlines)andthe reportedexperimentaldata(solidcircles) 45 3-6. ThenormalizedQEforthesimulatedresults(solidline)andthereported experimentaldata(solidcircles) 46 3-7. Thephoto-J-Vcurvesforthesimulatedresults(solidline)andthepublisheddata (solidcircles) 48 3-8. Acomparisonoftheperformanceparametersforthesimulatedresults(circles) andthepublisheddata(triangles) 49 3-9. Theschematicenergy-banddiagramforaCGScellunderequilibriumcondition..50 IX f 1 3- 4- 10. Thephoto-J-Vcurveforthesimulatedresultsandthepublisheddata 5 1. Aschematicofafour-terminalmechanically-stackedCGS/CIGStandemcell structure 58 44--2. PerformanceparametersofC1GSbottomcellunderworkingCGStopcellasa functionofCGSabsorberthickness 59 5- 4-3. EfficienciesofCGS/CIGStandemcell,CGStopcell,andCIGSbottomcell undertopcellasafunctionofCGStopcellabsorberthickness 60 4. Simulatedphoto-J-VcurvesofaCGStopcellandaCIGSbottomcellunderthe CGStopcellforaCGS/CIGStandemcellwithanefficiencyof25.22% 61 1. Fziilncmctohimcpkonseistsioanssaxfu=nc0t,i0o.n3,ofanddep0o.s5itiontimeforCdZnSfilmswithrelative 72 5-2. FilmthicknessvariationasafunctionofrelativezinccompositionxforCdZnS filmswithdepositiontimeof50minutes 73 5-3. PowderXRDpatternsofCdZnSfilmsdepositedonSLGwithrelativezinc compositionx=0(filmthicknessd«200nm),x=0.3(d»100nm),andx=0.5 (d»150nm) 74 5-4. GrazingincidenceXRDpatternsofCdZnSfilms,depositedonMo,withrelative zinccompositionsx=0,0.3,and0.5 75 5- 5-5. SEMmicrographsofthesurfaceofaCdi_xZnxSthinfilmwithrelativezinc 6- compositionx=0(CdS) 76 5-6. SEMmicrographsofthesurfaceofaCdi_xZnxSthinfilmwithrelativezinc compositionx=0.3 76 5-7. SEMmicrographsofthesurfaceofaCdi_xZnxSthinfilmwithrelativezinc compositionx=0.5 76 5-8. OpticaltransmittancespectraofCdZnSfilmswithrelativezinccompositionx= 0.3fordifferentfilmthickness 77 5-9. OpticaltransmittancespectraofCdZnSfilmswithrelativezinccompositionsx= 0(thicknessd»200nm)andx=0.3(d«100nm) 78 10. Plotsof(ahv versushvforCdZnSfilmswithrelativezinccompositionsx=0 (thicknessd*200nm),x=0.3(d»100nm),andx=0.5(d»l50nm) 79 1. SolarcellstructureusedtofabricateaZnO/CdZnS/CIGS(orCGS)cell 87 6-2. AcompletelyfinishedCIGScellwithNi/Altopcontact 88 6-3. Across-sectionalSEMimageoftheZnO/CdZnS/CIGS/Mo/SLGcell(10,000X)..89 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.