Development and validation of a multilayer cloud detection algorithm for the airborne demonstrator of the direct detection Doppler lidar on ADM-Aeolus Stephan Kox Ludwig-Maximilians-Universit¨at Mu¨nchen Meteorologisches Institut Mu¨nchen Dezember 2008 Development and validation of a multilayer cloud detection algorithm for the airborne demonstrator of the direct detection Doppler lidar on ADM-Aeolus Stephan Kox Diplomarbeit durchgefu¨hrt am Deutschen Zentrum fu¨r Luft- und Raumfahrt im Rahmen eines Projektes der Europa¨ischen Raumfahrtagentur vorgelegt von Stephan Kox aus Brunnthal Mu¨nchen, den 19.12.2008 Erstgutachter: Dr. Oliver Reitebuch Zweitgutachter: Dr. Matthias Wiegner Contents 1 Introduction 1 1.1 Impact of Clouds on Climate and Climate Change . . . . . . . . . . . . 2 1.2 Cloud Climatologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Cloud Observations with Spaceborne Lidars 5 2.1 Lidar Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Doppler Wind Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 ADM-Aeolus - ALADIN . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 ICESat - GLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 CALIPSO - CALIOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Cloud Detection with the ALADIN Airborne Demonstrator 33 3.1 ALADIN Airborne Demonstrator - A2D . . . . . . . . . . . . . . . . . 33 3.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.2 Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 A2D - Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.3 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Cloud Detection from Mie Spectrometer . . . . . . . . . . . . . . . . . 49 3.3.1 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.2 Scattering Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 vi CONTENTS 3.3.3 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.4 Simulated Signals and Minimum Detectable Cloud Optical Depth 59 3.3.5 Observed Signals and Multilayer Cloud Detection . . . . . . . . 65 3.4 Cloud Detection from Rayleigh Spectrometer . . . . . . . . . . . . . . . 70 3.4.1 Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.2 Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4.3 Simulated Signals and Minimum Detectable Cloud Optical Depth 74 3.4.4 Observed Signals and Multilayer Cloud Detection . . . . . . . . 77 4 Comparison of A2D, MULIS and Cloud Radar 81 4.1 Ground Campaign 2007 - Overview . . . . . . . . . . . . . . . . . . . . 81 4.1.1 ADM-Aeolus Ground Campaign Objectives . . . . . . . . . . . 81 4.1.2 METEK MIRA 36 - Cloud Radar of DWD . . . . . . . . . . . . 83 4.1.3 MULIS - Multiple Wavelength Lidar System of the University Munich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2.1 Multilayer Cirrus Cloud - 08.07.2007 . . . . . . . . . . . . . . . 85 4.2.2 Deep Broken Cumulus Clouds - 11.07.2007 . . . . . . . . . . . . 89 4.2.3 Thin Cloud at Medium Altitudes - 13.07.2007 . . . . . . . . . . 92 4.2.4 Thin Cirrus Cloud - 14.07.2007 . . . . . . . . . . . . . . . . . . 96 4.2.5 Clear Sky and Thin Single Layer Cloud - 17.07.2007 . . . . . . . 100 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 Conclusions 105 6 Outlook 107 List of Figures 109 List of Tables 115 Appendix 117 Bibliography 121 CONTENTS vii Acknowledgements 129 viii CONTENTS Chapter 1 Introduction Over one hundred years ago Arrhenius [1896] elucidated that the burning of fossil fuels would increase the concentration of CO within the earth’s atmosphere, increasing the 2 atmospheric greenhouse effect and thus leading to global warming. More recently in 2008, the Intergovernmental Panel on Climate Change (IPCC) definedinits“FourthAssessmentReport”[IPCC,2008]thatchangesintheatmospheric abundance of greenhouse gases and aerosols, in solar radiation and in land surface prop- erties alter the energy balance of the climate system. These changes can be expressed in terms of Radiative Forcing (RF), which is used to compare how a range of human and natural factors drive warming or cooling influences on global climate. The changes in RF are different for each mechanism taking place. Especially long-lived greenhouse gases lead to a positive RF while other mechanisms, for example, forced by aerosols result in a negative RF. The total aerosol radiative forcing can be split in the direct and the cloud albedo effect. Both effects are listed with a quite low scientific understanding. But before giving an explanation of the influence of anthropogenic produced aerosols on clouds, the general influence of clouds on the climate and the atmospheric radiation budget has to be known. 2 1. Introduction Figure 1.1: Schematic view on the earth’s annual global energy budget [Kiehl and Trenberth, 1997]. 1.1 Impact of Clouds on Climate and Climate Change Beside the importance for the global and regional water circulation, clouds regulate solar and terrestrial radiation very effectively. Figure 1.1 shows, that the surface in- frared radiation of 390 Wm−2 corresponds to a blackbody emission at a temperature of 15◦ C for the annual and global mean of outgoing fluxes. Some of the radiation leaving the atmosphere originates near the earth’s surface and is transmitted relatively unim- peded through the atmosphere. This radiation originates from areas with no clouds and that is present in the part of the spectrum known as the atmospheric window [Kiehl and Trenberth, 1997]. The estimate of longwave radiation leaving via the at- mospheric window decreases in the cloudy case to 80 Wm−2, showing that there is considerable absorption and re-emission at wavelengths in the atmospheric window by clouds. The value is assigned to 40 Wm−2 (Figure 1.1), which is simply 38% of the clear sky case, corresponding to the observed cloudiness of about 62% on the global scale. This emphasizes that very little radiation is transmitted directly to space although the atmosphere is transparent. The annual and global mean of shortwave incoming (so- lar) radiation of 342 Wm−2 is reflected in parts by aerosols, clouds, and atmospheric
Description: