ebook img

Development and evaluation of a viscoelastic boundary element method to predict asphalt pavement cracking PDF

288 Pages·2003·10.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development and evaluation of a viscoelastic boundary element method to predict asphalt pavement cracking

DEVELOPMENTANDEVALUATIONOFAVISCOELASTICBOUNDARY ELEMENTMETHODTOPREDICTASPHALTPAVEMENTCRACKING By BOONCHAI SANGPETNGAM ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2003 Copyright2003 by BOONCHAISANGPETNGAM Tomyparents,brothers,sister,andMeena. ACKNOWLEDGMENTS Firstofall,IwouldliketoacknowledgeDr.BjornBirgisson,mychairperson,for hissupport,encouragement,andpreciousguidanceinbothacademicandlifethroughout mycourseofstudy.IalsothankDr.ReynaldoRoque,mycochair,forthegenerous contributionofhisdiscussionandthinkingtothiswork.Manythanksshouldbegivento mypastandpresentcolleagues,Dr.ZhiwangZhang,Dr.LeslieMyers,MarcNovak, AdamJajliardo,andChoteSoranakom,fortheirassistanceandvaluablecontributionsto myresearchstudy. IalsowouldliketosendmyappreciationtotheFloridaDepartmentof TransportationandtheFederalHighwayAdministration,especiallytoMr.GalePage, Mr.BruceDietrich,Mr.GregSholar,andMr.GregSchiessfortheongoingfinancialand technicalsupportofthestudyofcrackingmechanismsinasphaltpavementsand mixtures. Andlastly,Iwouldliketothankmyparents,brothersandsisterforunderstanding andsupportingmylongpursuitofthePh.D.degree,andspecialthankstonoo+Meenfor hersupport,encouragement,andartworksinthisdissertation. IV TABLEOFCONTENTS Page ACKNOWLEDGMENTS iv LISTOFTABLES ix LISTOFFIGURES x ABSTRACT xvi CHAPTER 1 INTRODUCTION 1 1.1Background 1 1.2S1t.a2t.e1mIednetntoiffipcraotbiolnemofComplexityofHMACrackingMechanisms 22 1.2.2IdentificationofCriticalPavementDesignConditions 3 1.2.3NumericalConsiderations 3 1.3Hypothesis 4 1.4Objectives 4 1.5Scope 4 1.6ResearchApproach 5 2 LITERATUREREVIEW 8 2.1ClassicalFatigueCracking 8 2.2ContinuumDamage 10 2.3HotMixAsphaltFractureMechanics 16 2.3.1Background 16 2.3.2ConventionalFractureMechanics 17 2.3.3CrackGrowthandFractureThresholdinHotMixAsphalt 20 2.3.4HMAFractureMechanics 24 3 TWO-DIMENSIONALDISPLACEMENTDISCONTINUITYMETHOD 30 3.1FundamentalConsiderations 32 3.2DisplacementDiscontinuityElementFormulation 38 3.3NumericalFormulation 41 3.4ModelingofGeometryandBoundaryConditions 45 3.5Crack-TipElement 47 v 3 3.6ComparisontoFiniteElementMethod 48 3.7HigherOrderElementFormulation 49 3.8Multi-LayerStructure 51 3.9VerificationandExamples 54 3.9.1ACrackinRectangularPlate 55 3.9.2CrackPropagationintheSuperpaveIndirectTensionTest 57 3.9.3AnnulusInsideaCircularHoleinaLargePlate 59 3.9.4AThree-LayerPavement 61 3.10SummaryoftheDDMethod 72 4 VISCOELASTICDISPLACEMENTDISCONTINUITYMETHOD 73 4.1ViscoelasticBoundaryValueProblem 73 4.2TheCorrespondencePrinciple 76 4.3TransformedBoundaryConditions 78 4.3.1ConstantStepFunction 79 4.3.2ContinuousSineFunction 80 4.3.3HaversineFunction 81 4.4TransformedMaterialProperty 81 4.4.1BurgersModel 84 4.4.2PowerLawModel 89 4.5TransformedDisplacementDiscontinuityEquations 92 4.6NumericalLaplaceInversion 96 4.7StrainEnergyinOneDirection 99 4.8VerificationandExamples 102 4.8.1One-DimensionalProblem 102 4.8.2ModelingCreepBehaviorinSuperpaveIndirectTensionTest 104 4.8.3Thick-WalledViscoelasticTube 108 4.8.3.1Case1:Kelvinmodel 108 4.8.3.2Case2:Maxwellmodel 113 4.8.3.3Case3:Burgersmodel 114 4.8.3. Case4:constantPoisonratio 119 4.9ViscoelasticityofHotMixAsphaltMixtures 125 4.10DissipatedCreepStrainEnergy 127 4.11ResponseofViscoelasticMaterialtoCyclicLoading 130 5 HOTMIXASPHALTFRACTUREMECHANICS-BASEDCRACKGROWTH SIMULATOR 135 5.1Hot-MixedAsphaltFractureSimulatorFramework 137 5.2AssumptionsandLimitations 138 5.3CriticalZone 140 5.4DamageinCriticalZone 146 5.4.1DCSEatLocationAwayfromCrackTip 149 5.4.2DCSEatLocationofCrackTip 152 5.4.3AverageDCSEintheCriticalZone 153 5.5StrainHistoryduringCrackPropagation 155 vi 1 5.6CriticalZoneVicinityandDirectionofCrackGrowth 165 5.6.1Three-ZoneGrid:Case1 167 5.6.2Three-ZoneGrid:Case2 169 5.7VerificationofHMAFractureSimulator 171 6 ANALYSISANDFINDINGS 177 6.1VerificationwithFieldPavementSections 177 6.1.1PavementSections 177 6.1.2PavementModeling 182 6.1.3CrackGrowthPrediction 187 6.1.4CrackGrowthSimulation 193 6.1.4.1Firstcrackgrowthstep 193 6.1.4.2Secondcrackgrowthstep 195 6.1.4.3Subsequentcrackgrowthsteps 197 6.1.5InterpretationofResults 201 6.1.5.1110sections 201 6.1.5.2175sections 202 6.1.5.3US301sections 202 6.2DirectionofCrackGrowthinAsphaltPavement 203 6.3ResidualStressinFlexibleAsphaltPavements 207 6.3.1InvestigationApproach 207 6.3.2InterpretationofTime-DependentResponseinAsphaltConcreteLayer21 6.4EffectofStiffnessGradient 218 6.4.1InvestigationApproach 219 6.4.1.1StiffnessGradients 219 6.4.1.2Pavementmodeling 221 6.4.1.3Stressintensityfactor(Ki) 227 6.4.1.4Referencesectionsforcriticalstiffnessgradients 229 6.4.2IntrepretationofResults 233 7 CONCLUSIONSANDRECOMMENDATIONS 235 7.1Conclusions 235 7.2Recommendations 238 APPENDIX A HOOKE’SLAW 240 B FORMULATIONFORDISPLACEMENTDISCONTINUITYELEMENT 242 QuadraticElement 242 ConstantElement 247 Crack-TipElement 248 Vll 1 C SOLUTIONSOFONE-DIMENSIONALVISCOELASTICPROBLEMS 249 ViscoelasticMaterialunderContinuousSineStress 249 ViscoelasticMaterialunderaHalf-SineStress 250 D DAMAGEACCUMULATIONANDCRACKGROWTH 25 SingleHaversineLoad 251 CyclicHaversineLoads 255 CrackGeometryChange 260 LISTOFREFERENCES 263 BIOGRAPHICALSKETCH 269 viii LISTOFTABLES T4-able page 5- 45--1 MaterialPropertiesinCorrespondencePrinciple 83 6- 4-2 IntegrationPointsandCoefficientsfor3-PointGaussQuadrature 102 3 ViscoelasticPropertiesforThick-WalledTubeExample 110 1 SuperpaveCoarse-GradedandFine-GradedGradations 173 2 InputPropertiesoftheSuperpaveCoarse-GradedandFine-GradedMixes 173 1 LocationofSections 178 6-2 GeneralDescriptionofFieldSections 179 6-3 LayerThicknessandModulusofFieldSections 180 6-4 PropertiesofAsphaltConcreteLayersat10°C 181 6-4 Continued 182 6-5 LocationofMaximumTensileStressatSurfaceofPavement 190 6-6 MaterialPropertiesofaFlexiblePavementStructure 208 6-7 ResilientModulusatThreeTemperaturesforI10MW2and175-1C 220 IX LISTOFFIGURES Figure page 2-1. ADpapmlaigceat:ioa)nSotfreCsosr-rSetrsapionn;dbe)ncSetrPersisn-cPispeluedtooSCtyrcailni.c(DLaeteaawnidthKNiemgl1i9g9i8bble) 12 2-2. Stress-PseudoStrainBehaviorandPseudoStiffnessChangesin:a)Controlled- StrainMode;b)Controlled-StressMode.(LeeandKim1998b) 14 2-3. ChangeinPseudoStiffnessBeforeandAfterRestPeriod.(LeeandKim1998b)..14 2-4. FiniteElementModelofIDTSamplewithHoleandVerticalCrack 18 2-5. TheoreticalRelationshipbetweenNormalizedCrackLengthandNormalized HorizontalDisplacementfromIDT 19 2-6. FractureTestResultsfortheMixturesfromEightFieldSections 19 2- 23--7. CrackGrowthRateatK=8MPa*mm°5forallMixtures 20 2-8. IllustrationofCrackPropagationinAsphaltMixtures 22 2-9. IllustrationofPotentialLoadingCondition (ContinuousLoading) 22 2-10. DeterminationofDissipatedCreepStrainEnergy 23 2-11. TheSuperpaveIndirectTensionTest(IDT) 23 2-12.CrackGrowthProcess 27 2-13. FractureEnergyDensityofSuperpaveMixtures@10C 28 14. FractureEnergyDensityofEightFieldSections@10C 29 1. InteriorandExteriorRegionsofBoundaryS 34 3-2. DisplacementDiscontinuityElements 35 3-3. AConstantDDElementIllustratingPositiveDisplacementDiscontinuity 39 3-4. DirectionsofPositiveStressComponents 41 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.