Development and Application of Biomedical Titanium Alloys Edited by Liqiang Wang Shanghai Jiao Tong University,Shanghai,PR China & Lai-Chang Zhang Edith Cowan University,Perth WA,Australia Development and Application of Biomedical Titanium Alloys Editor: Liqiang Wang and Lai-Chang Zhang ISBN (Online): 978-1-68108-619-4 ISBN (Print): 978-1-68108-620-0 © 2018, Bentham eBooks imprint. Published by Bentham Science Publishers – Sharjah, UAE. All Rights Reserved. BENTHAM SCIENCE PUBLISHERS LTD. End User License Agreement (for non-institutional, personal use) This is an agreement between you and Bentham Science Publishers Ltd. Please read this License Agreement carefully before using the ebook/echapter/ejournal (“Work”). Your use of the Work constitutes your agreement to the terms and conditions set forth in this License Agreement. If you do not agree to these terms and conditions then you should not use the Work. Bentham Science Publishers agrees to grant you a non-exclusive, non-transferable limited license to use the Work subject to and in accordance with the following terms and conditions. This License Agreement is for non-library, personal use only. For a library / institutional / multi user license in respect of the Work, please contact: [email protected]. Usage Rules: 1. All rights reserved: The Work is the subject of copyright and Bentham Science Publishers either owns the Work (and the copyright in it) or is licensed to distribute the Work. You shall not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit the Work or make the Work available for others to do any of the same, in any form or by any means, in whole or in part, in each case without the prior written permission of Bentham Science Publishers, unless stated otherwise in this License Agreement. 2. You may download a copy of the Work on one occasion to one personal computer (including tablet, laptop, desktop, or other such devices). You may make one back-up copy of the Work to avoid losing it. The following DRM (Digital Rights Management) policy may also be applicable to the Work at Bentham Science Publishers’ election, acting in its sole discretion: l 25 ‘copy’ commands can be executed every 7 days in respect of the Work. The text selected for copying cannot extend to more than a single page. Each time a text ‘copy’ command is executed, irrespective of whether the text selection is made from within one page or from separate pages, it will be considered as a separate / individual ‘copy’ command. l 25 pages only from the Work can be printed every 7 days. 3. The unauthorised use or distribution of copyrighted or other proprietary content is illegal and could subject you to liability for substantial money damages. You will be liable for any damage resulting from your misuse of the Work or any violation of this License Agreement, including any infringement by you of copyrights or proprietary rights. Disclaimer: Bentham Science Publishers does not guarantee that the information in the Work is error-free, or warrant that it will meet your requirements or that access to the Work will be uninterrupted or error-free. The Work is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of the Work is assumed by you. No responsibility is assumed by Bentham Science Publishers, its staff, editors and/or authors for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the Work. Limitation of Liability: In no event will Bentham Science Publishers, its staff, editors and/or authors, be liable for any damages, including, without limitation, special, incidental and/or consequential damages and/or damages for lost data and/or profits arising out of (whether directly or indirectly) the use or inability to use the Work. The entire liability of Bentham Science Publishers shall be limited to the amount actually paid by you for the Work. General: 1. Any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims) will be governed by and construed in accordance with the laws of the U.A.E. as applied in the Emirate of Dubai. Each party agrees that the courts of the Emirate of Dubai shall have exclusive jurisdiction to settle any dispute or claim arising out of or in connection with this License Agreement or the Work (including non-contractual disputes or claims). 2. Your rights under this License Agreement will automatically terminate without notice and without the need for a court order if at any point you breach any terms of this License Agreement. In no event will any delay or failure by Bentham Science Publishers in enforcing your compliance with this License Agreement constitute a waiver of any of its rights. 3. You acknowledge that you have read this License Agreement, and agree to be bound by its terms and conditions. To the extent that any other terms and conditions presented on any website of Bentham Science Publishers conflict with, or are inconsistent with, the terms and conditions set out in this License Agreement, you acknowledge that the terms and conditions set out in this License Agreement shall prevail. Bentham Science Publishers Ltd. Executive Suite Y - 2 PO Box 7917, Saif Zone Sharjah, U.A.E. Email: [email protected] CONTENTS PREFACE ................................................................................................................................................ i LIST OF CONTRIBUTORS .................................................................................................................. (cid:76)v CHAPTER 1 APPLICATION OF BIOMEDICAL TITANIUM ALLOYS .................................... 1 Liqiang Wang and Lai-Chang Zhang INTRODUCTION .......................................................................................................................... 1 α + β TITANIUM ALLOYS IN BIOMEDICAL APPLICATIONS ........................................... 2 β TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS ............................................ 4 Current Development of β Titanium Alloys ........................................................................... 4 Design of β Titanium Alloys .................................................................................................. 6 Biocompatibility of β Titanium Alloys ................................................................................... 6 PHASE TRANSFORMATIONS OF TITANIUM ALLOYS IN BIOMEDICAL APPLICATIONS ............................................................................................................................ 9 Ti-Ni Alloys ............................................................................................................................ 9 Ti-Nb Alloys ........................................................................................................................... 10 Current Applications of Phase Transformation ...................................................................... 11 CONCLUSION ............................................................................................................................... 13 CONFLICT OF INTEREST ......................................................................................................... 13 ACKNOWLEDGEMENTS ........................................................................................................... 13 REFERENCES ............................................................................................................................... 14 CHAPTER 2 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF T(cid:76)N(cid:69)T(cid:68)Z(cid:85) TITANIUM ALLOY ............................................................................................................................... 18 Liqiang Wang, Xueting Wang and Lai-Chang Zhang INTRODUCTION .......................................................................................................................... 18 TiNi Shape Memory Alloy ..................................................................................................... 19 Biomedical β Titanium Alloy ................................................................................................. 20 Elements Design for New Generation of β Titanium Alloy ................................................... 22 The Mechanical Properties of β Titanium Alloys ................................................................... 23 MATERIAL PREPARATION AND EXPERIMENTAL METHOD ....................................... 25 Material Preparation ................................................................................................................ 25 Experiment Equipments and Analysis Methods ..................................................................... 25 Calculation of β Phase Transition Point ................................................................................. 26 Martensite Start Transformation Point (Ms) ........................................................................... 26 INFLUENCE OF DIRECT AND CROSS ROLLING ON MARTENSITE TRANSFORMATION AND MECHANICAL PROPERTIES .................................................. 28 Specimen Preparation ............................................................................................................. 28 Martensite Transformation in Direct Rolling ......................................................................... 28 Martensite Morphology During Direct Rolling Process ......................................................... 29 Martensite Transformation During Cross Rolling Process ..................................................... 31 Martensite Morphology During Cross Rolling Process .......................................................... 32 Strain-induced Martensite Transformation ............................................................................. 33 TEM Analysis of Direct-Rolled Structure .............................................................................. 34 Mechanical Properties of Direct-Rolled Specimen ................................................................. 38 Mechanical Properties of Cross-Rolled Specimen ................................................................. 40 SHAPE MEMORY EFFECT OF TI-35NB-3ZR-2TA ALLOY ................................................ 42 CONCLUSIONS ............................................................................................................................. 48 CONFLICT OF INTEREST ......................................................................................................... 48 ACKNOWLEDGEMENTS ........................................................................................................... 48 REFERENCES ............................................................................................................................... 48 CHAPTER 3 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BETA TYPE TI- FE BASED ALLOYS .............................................................................................................................. 51 Lai-Chang Zhang (cid:68)(cid:81)(cid:71) Liqiang Wang INTRODUCTION .......................................................................................................................... 51 TI-FE-TA ALLOYS ....................................................................................................................... 52 TI-FE-NB ALLOYS ....................................................................................................................... 56 TI-FE BASED ALLOYS WITH MULTIPLE LENGTH-SCALE PHASES ............................ 63 CONCLUDING REMARKS ......................................................................................................... 66 CONFLICT OF INTEREST ......................................................................................................... 67 ACKNOWLEDGEMENTS ........................................................................................................... 67 REFERENCES ............................................................................................................................... 67 CHAPTER 4 SELECTIVE LASER MELTING OF TITANIUM ALLOYS: PROCESSING, MICROSTRUCTURE AND PROPERTIES ........................................................................................ 73 Lai-Chang Zhang (cid:68)(cid:81)(cid:71) Liqiang Wang INTRODUCTION .......................................................................................................................... 73 SLM CHARACTERISTICS AND PROCESSING PARAMETERS ........................................ 74 Process Overview .................................................................................................................... 74 Processing Parameters Involved ............................................................................................. 76 SLM OF SOLID TITANIUM ALLOYS ...................................................................................... 78 SLM of α-type CP-Ti .............................................................................................................. 78 SLM of (α+β)-type Titanium Alloys ...................................................................................... 80 SLM of β-type Titanium Alloy ............................................................................................... 83 SLM OF POROUS TITANIUM STRUCTURES ........................................................................ 84 CONCLUDING REMARKS ......................................................................................................... 87 CONFLICT OF INTEREST ......................................................................................................... 87 ACKNOWLEDGEMENTS ........................................................................................................... 87 REFERENCES ............................................................................................................................... 87 CHAPTER 5 ELECTRON BEAM MELTING OF POROUS TITANIUM ALLOYS: MICROSTRUCTURE AND MECHANICAL BEHAVIOR ............................................................... 94 Lai-Chang Zhang, Yujing Liu and Liqiang Wang INTRODUCTION .......................................................................................................................... 94 MANUFACTURING PROCESS .................................................................................................. 96 Defect and Surface Roughness Generation ............................................................................. 98 MECHANICAL PROPERTIES OF POROUS STRUCTURES ............................................... 98 Super-elasticity ....................................................................................................................... 99 Fatigue Properties ................................................................................................................... 102 Fatigue Crack Morphology and Deflection ............................................................................ 104 COMPARISON OF FATIGUE BETWEEN TI2448 AND TI6-AL-4V POROUS STRUCTURES ............................................................................................................................... 107 CONCLUDING REMARKS ......................................................................................................... 108 CONFLICT OF INTEREST ......................................................................................................... 109 ACKNOWLEDGEMENTS ........................................................................................................... 109 REFERENCES ............................................................................................................................... 109 CHAPTER 6 PREPARATION, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF N(cid:76)T(cid:76)-N(cid:69) POROUS TITANIUM ALLOY ...................................................................................... 113 Liqiang Wang, Wei Huang, Wei Zhang and Lai-Chang Zhang INTRODUCTION .......................................................................................................................... 114 Shape Memory Alloy .............................................................................................................. 114 NiTi and NiTiNb Alloy ........................................................................................................... 114 Phase Transition of NiTi Alloy ...................................................................................... 114 NiTi Alloy Properties .............................................................................................................. 119 (1) Shape Memory Effect ............................................................................................... 119 (2) Superelastic Performance ....................................................................................... 120 (3) Biocompatibility ...................................................................................................... 121 NiTi alloy Biomedical Applications ....................................................................................... 122 Research About NiTi / NiTi-Nb Alloys .................................................................................. 123 Meaning and Content of This Research Work ........................................................................ 130 PREPARATION AND ANALYSIS OF MATERIALS .............................................................. 131 Materials Preparation .............................................................................................................. 131 Experimental Materials ........................................................................................................... 132 Frame Design .......................................................................................................................... 133 Sintering Process ..................................................................................................................... 133 Analysis Test Methods ............................................................................................................ 134 Metallographic Microscope .................................................................................................... 134 Energy Dispersive Spectrometer ............................................................................................. 135 Nanoindentation Test .............................................................................................................. 135 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AS-SINTERED NITI/NITI-NB ALLOY .................................................................................................................. 138 Experimental Results and Analysis ........................................................................................ 138 Characterization of Sintered Metallographic Microstructure ...................................... 138 Diffused Layer Scanning ........................................................................................................ 139 Microstructure Phase and Elemental Composition ................................................................. 140 CONCLUSIONS ............................................................................................................................. 143 CONFLICT OF INTEREST ......................................................................................................... 144 ACKNOWLEDGEMENTS ........................................................................................................... 144 REFERENCES ............................................................................................................................... 144 CHAPTER 7 SURFACE MODIFICATION OF BIOMEDICAL TITANIUM ALLOYS ............. 149 Zihao Ding, Liqiang Wang, Chengjian Zhang and Lai-Chang Zhang INTRODUCTION .......................................................................................................................... 149 MATERIALS AND METHODS ................................................................................................... 154 Materials and FSP System ...................................................................................................... 154 Microstructure Observation and Composition Analysis ......................................................... 155 Nanoindentation ...................................................................................................................... 155 In Vitro Biocompatibility Test ................................................................................................ 156 (1) Cytotoxicity Test ...................................................................................................... 156 (2) Cell Culture ............................................................................................................. 156 (3) Cell Adhesion ........................................................................................................... 156 (4) Cell Proliferation ..................................................................................................... 156 (5) Alkaline Phosphatase Activity ................................................................................. 157 (6) Mineralization Assay ............................................................................................... 157 Corrosion Resistance .............................................................................................................. 157 RESULTS AND DISCUSSIONS ................................................................................................... 158 Microstructure ......................................................................................................................... 158 Microhardness ......................................................................................................................... 162 Biocompatibility Test .............................................................................................................. 164 (1) Cytotoxicity Assay ................................................................................................... 164 (2) Cell adhesion Assay ................................................................................................. 165 (3) Cell proliferation assay ........................................................................................... 167 Corrosion Behavior ................................................................................................................. 168 CONCLUSION ............................................................................................................................... 170 CONFLICT OF INTEREST ......................................................................................................... 171 ACKNOWLEDGEMENTS ........................................................................................................... 171 REFERENCES ............................................................................................................................... 171 CHAPTER 8 CORROSION BEHAVIOR OF SELECTIVE LASER MELTED TITANIUM ALLOYS ................................................................................................................................................... 174 Lai-Chang Zhang, Junxi Zhang and Liqiang Wang INTRODUCTION .......................................................................................................................... 174 CORROSION BEHAVIOR OF SLM-PRODUCED TI-6AL-4V .............................................. 176 CORROSION BEHAVIOR OF SLM-PRODUCED TI-6AL-4V AFTER HEAT TREATMENT ................................................................................................................................. 183 CORROSION BEHAVIOR OF SLM-PRODUCED TITANINUM COMPOSITE ................ 189 CONCLUDING REMARKS ......................................................................................................... 193 CONFLICT OF INTEREST ......................................................................................................... 194 ACKNOWLEDGEMENTS ........................................................................................................... 194 REFERENCES ............................................................................................................................... 194 SUBJECT INDEX ................................................................................................................................... (cid:20)(cid:28)(cid:28) i PREFACE Titanium and its alloys have been widely used as biomedical implant materials due to their low density, good mechanical properties, superior corrosion resistance and biocompatibility when compared with other metallic biomaterials such as Co–Cr alloys and stainless steels. Recently, β-type titanium alloys have been increasingly considered as excellent implant materials because of the remarkable combination of high strength-to-weight ratio, good fatigue resistance, relatively low Young's modulus, good biocompatibility and high corrosion resistance. Compared to the conventional (α+β)-type titanium biomaterials such as Ti-6Al- 4V, β-type titanium alloys containing non-toxic constituents possess Young’s modulus (~60 GPa) closer to that of bone (10-30 GPa). From the viewpoint of practical biomedical application, it is highly desirable to obtain β-type titanium alloys. Although biomedical titanium and its alloys have been widely used, extensive endeavors have also been made in the development of new β-type titanium alloys. In addition, surface modification of titanium alloys for biomedical applications, and manufacturing of titanium alloys by new technologies (such as by two common metal additive manufacturing technologies, i.e. selective laser melting and electron beam melting), etc. are also being done. This book covers the very recent progresses in new alloy development, surface modification and additive manufacturing of biomedical titanium. This book covers the recent progress of biomedical titanium alloys in terms of the processing, microstructure, mechanical properties and corrosion properties. Chapter 1 overviews the application of biomedical titanium alloys and recent development process of new medical grade titanium alloys in terms of composition design, biocompatibility and shape memory effect etc. Chapter 2 describes the microstructure and mechanical properties of TiNbTaZr titanium alloy. The results show that the TiNbTaZr β titanium alloy with lower elastic modulus and non- toxic alloying elements has much more important application in biomedical field. The Ti- 35Nb-2Ta-3Zr β titanium alloy is studied and the alloy has the complex properties of lower elastic modulus, high strength, high elongation and excellent shape memory effect. Compared with direct rolling, cross rolling is beneficial to the isotropic of the microstructure and mechanical properties. Chapter 3 presents the microstructure and mechanical properties of a serial of novel β-type Ti-Fe-based alloys developed very recently by using the DV-Xα molecular orbital method. The influence of Ta, Fe and Nb contents on the phase transformation, β phase stability and microstructural evolution of the alloys are investigated. The resulting mechanical properties of the alloys are evaluated and compared with those of the widely used biomaterials to ascertain their suitability for orthopaedic application. The results suggest that among the designed alloys, Ti-10Fe-10Ta, Ti-7Fe-11Nb and Ti-11Nb-9Fe presents the best combination of mechanical properties making them more desirable than the commonly used CP-Ti and Ti- 6Al-4V materials for implant application. It is demonstrated that through proper alloy design it is possible to design new Ti alloys with favourable properties better than CP-Ti and Ti-6Al- 4V alloys for orthopaedic application. Chapter 4 illustrates the progress in processing, microstructure and properties of biomedical titanium alloys manufactured by selective laser melting (SLM). Although titanium alloys have exhibited combination of a serial of excellent properties, the hard machinery and/or high