ebook img

Developing Networks using Artificial Intelligence PDF

256 Pages·2019·9.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Developing Networks using Artificial Intelligence

Wireless Networks Haipeng Yao Chunxiao Jiang Yi Qian Developing Networks using Artificial Intelligence Wireless Networks Serieseditor XueminShermanShen UniversityofWaterloo,Waterloo,ON,Canada Moreinformationaboutthisseriesathttp://www.springer.com/series/14180 Haipeng Yao • Chunxiao Jiang (cid:129) Yi Qian Developing Networks using Artificial Intelligence 123 HaipengYao ChunxiaoJiang SchofInfo&CommunicationEngg TsinghuaSpaceCenter BeijingUniversityofPostsandTelecomm TsinghuaUniversity China,Beijing,China Beijing,Beijing,China YiQian DeptofElectrical&ComputerEngg UniversityofNebraska-Lincoln Omaha,NE,USA ISSN2366-1186 ISSN2366-1445 (electronic) WirelessNetworks ISBN978-3-030-15027-3 ISBN978-3-030-15028-0 (eBook) https://doi.org/10.1007/978-3-030-15028-0 LibraryofCongressControlNumber:2019935167 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface With the software-defined networking (SDN), network function virtualization (NFV), and fifth-generation wireless systems (5G) development, the global net- work is undergoing profound restructuring and transformation. However, with the improvement of the flexibility and scalability of the networks, the ever-increasing complexityofnetworksmakeseffectivemonitoring,overallcontrol,andoptimiza- tion extremely difficult. Recently, adding intelligence to the control plane through AIandMLbecomesatrendandadirectionofnetworkdevelopment. In this book, we apply different machine learning approaches to investigate solutionsforintelligentmonitoring,overallcontrol,andoptimizationofnetworks. We focus on four scenarios of successfully applying machine learning in network space. Intelligent Network Awareness In the network, different applications produce various traffic types with diverse features and service requirements. Therefore, in ordertobettermanageandcontrolnetworking,theintelligentawarenessofnetwork trafficplaysasignificantrole.InChap.3,wediscussthemainchallengeofnetwork traffic intelligent awareness and introduced several machine learning-based traffic awareness algorithms, such as traffic classification, anomaly traffic identification, andtrafficprediction. IntelligentNetworkControl Findingthenear-optimalcontrolstrategyisthemost critical and ubiquitous problem in a network. However, the traditional works on thecontrolplanearelargelyreliedonamanualprocessinconfiguringforwarding, which cannot be employed for nowadays network condition. To address this issue, several artificial intelligence approaches for self-learning control strategies innetworksareintroducedinChap.4. Intelligent Network Resource Allocation Resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming, and virtual machine placement in cloud computing. Compared with the traditional with-box approach, ML methods are more suitable to solve v vi Preface the complexity of network resource allocation problems. Part of these works is introducedinChap.5. Intent-Based Networking Management Future networks need to capture busi- ness intent and activate it network-wide in order to bridge the gap between the business needs and the network deliveries. Therefore, in this book, semantic comprehension function is introduced to the network to understand the high-level businessintent.PartoftheseworksisintroducedinChap.6. The topic of AI-driven networking is quite hot in current academia. We can now find many books on this topic. The following two features make this book a uniquesourceforstudentsandresearchers.Thisbookpresentsafour-tiernetwork architecturenamedNetworkAI,whichisapplyingAIandMLtodealwithdifferent level challenges of today’s networking. This book presents a formalized analysis of several up-to-date networking challenges like virtual network embedding, QoS routing, etc. Some machine learning methods were introduced to effectively solve these challenges. These successful cases show how the ML can benefit and acceleratethenetworkdevelopment. Overall,thisbookaimsatgivingacomprehensivediscussiononthemotivation, problem formulation, and research methodology on applying machine learning in thefutureintelligentnetwork.Althoughwemadeanearnestendeavorforthisbook, theremaystillbeerrorsinthebook.Wewouldhighlyappreciateifyoucontactus whenyoufindany. Beijing,China HaipengYao Beijing,China ChunxiaoJiang Omaha,NE,USA YiQian Acknowledgments Thankstoallthecollaboratorswhohavealsocontributedtothisbook:TianleMai, MengnanLi,ChaoQiu,PeiyingZhang,YaqingJin,andYiqiXue. vii Contents 1 Introduction .................................................................. 1 1.1 Background.............................................................. 1 1.2 OverviewofSDNandMachineLearning ............................. 2 1.2.1 SoftwareDefinedNetworking(SDN) ......................... 2 1.2.2 MachineLearning .............................................. 4 1.3 RelatedResearchandDevelopment.................................... 9 1.3.1 3GPPSA2....................................................... 9 1.3.2 ETSIISGENI................................................... 9 1.3.3 ITU-TFG-ML5G............................................... 10 1.4 OrganizationsofThisBook ............................................ 11 1.5 Summary ................................................................ 12 2 Intelligence-DrivenNetworkingArchitecture ............................ 13 2.1 Network AI: An Intelligent Network Architecture for Self-LearningControlStrategiesinSoftwareDefinedNetworks..... 13 2.1.1 NetworkArchitecture .......................................... 15 2.1.2 NetworkControlLoop ......................................... 17 2.1.3 UseCase ........................................................ 23 2.1.4 ChallengesandDiscussions.................................... 26 2.2 Summary ................................................................ 28 References..................................................................... 28 3 IntelligentNetworkAwareness............................................. 31 3.1 Intrusion Detection System Based on Multi-Level Semi-SupervisedMachineLearning................................... 31 3.1.1 ProposedScheme(MSML) .................................... 32 3.1.2 Evaluation....................................................... 40 3.2 IntrusionDetectionBasedonHybridMulti-LevelDataMining ..... 50 3.2.1 TheFrameworkofHMLD ..................................... 52 3.2.2 HMLDwithKDDCUP99 ...................................... 55 3.2.3 ExperimentalResultsandDiscussions ........................ 65 ix x Contents 3.3 AbnormalNetworkTrafficDetectionBasedonBigData Analysis ................................................................. 69 3.3.1 SystemModel................................................... 70 3.3.2 SimulationResultsandDiscussions ........................... 71 3.4 Summary ................................................................ 80 References..................................................................... 81 4 IntelligentNetworkControl ................................................ 85 4.1 Multi-ControllerOptimizationinSDN ................................ 85 4.1.1 SystemModel................................................... 86 4.1.2 Methodology.................................................... 89 4.1.3 SimulationResults.............................................. 91 4.2 QoS-EnabledLoadSchedulingBasedonReinforcement Learning................................................................. 94 4.2.1 SystemDescription............................................. 95 4.2.2 SystemModel................................................... 98 4.2.3 ProblemFormulation........................................... 100 4.2.4 SimulationResultsandDiscussions ........................... 105 4.3 WLANInterferenceSelf-OptimizationBasedSOMNeural Networks ................................................................ 109 4.3.1 SomNetworkTraining ......................................... 110 4.3.2 SomNeuralNetworkOptimization............................ 110 4.3.3 NetworkTrainingAndSimulation............................. 114 4.3.4 PowerEfficiencySimulation .................................. 120 4.4 Blockchain-BasedSoftware-DefinedIndustrialInternetof Things:ADuelingDeepQ-LearningApproach....................... 127 4.4.1 SystemModel .................................................. 128 4.4.2 NetworkModel ................................................. 128 4.4.3 Blockchain-BasedConsensusProtocol ....................... 131 4.4.4 DetailedStepsandTheoreticalAnalysis ...................... 133 4.4.5 ProblemFormulation .......................................... 136 4.4.6 DuelingDeepQ-Learning...................................... 138 4.4.7 SimulationResultsandDiscussions ........................... 142 4.5 Summary ................................................................ 148 References..................................................................... 150 5 IntelligentNetworkResourceManagement .............................. 157 5.1 VirtualNetworkEmbeddingBasedonRDAM........................ 157 5.1.1 SystemModelandProblemFormulation...................... 158 5.1.2 RDAMAlgorithm .............................................. 162 5.1.3 DynamicUpdateofSubstrateNetwork........................ 165 5.1.4 NetworkModelling............................................. 170 5.1.5 TrainingandTesting............................................ 172 5.1.6 Experiments..................................................... 175

Description:
This book mainly discusses the most important issues in artificial intelligence-aided future networks, such as applying different ML approaches to investigate solutions to intelligently monitor, control and optimize networking. The authors focus on four scenarios of successfully applying machine lea
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.