ebook img

Developing Hybrid Thickness-Accommodation Techniques for New Origami-Inspired Engineered PDF

98 Pages·2017·12.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Developing Hybrid Thickness-Accommodation Techniques for New Origami-Inspired Engineered

Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-05-01 Developing Hybrid Thickness-Accommodation Techniques for New Origami-Inspired Engineered Systems Kyler Austin Tolman Brigham Young University Follow this and additional works at:https://scholarsarchive.byu.edu/etd Part of theMechanical Engineering Commons BYU ScholarsArchive Citation Tolman, Kyler Austin, "Developing Hybrid Thickness-Accommodation Techniques for New Origami-Inspired Engineered Systems" (2017).All Theses and Dissertations. 6360. https://scholarsarchive.byu.edu/etd/6360 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please [email protected], [email protected]. DevelopingHybridThickness-AccommodationTechniquesforNew Origami-InspiredEngineeredSystems KylerAustinTolman Athesissubmittedtothefacultyof BrighamYoungUniversity inpartialfulfillmentoftherequirementsforthedegreeof MasterofScience LarryL.Howell,Chair SpencerP.Magleby R.DanielMaynes DepartmentofMechanicalEngineering BrighamYoungUniversity Copyright©2017KylerAustinTolman AllRightsReserved ABSTRACT DevelopingHybridThickness-AccommodationTechniquesforNew Origami-InspiredEngineeredSystems KylerAustinTolman DepartmentofMechanicalEngineering,BYU MasterofScience Origami has become a source of inspiration in a number of engineered systems. In most systems, non-paper materials where material thickness is non-negligible is required. In origami- inspired engineered systems where thickness is non-negligible, thickness-accommodation tech- niquesmustbeutilizedtoovercometheissueofself-intersection. Manythickness-accommodation techniques have been developed for use in thick-origami-inspired-engineered systems. In this work several thickness-accommodation techniques are reviewed and discussed. New thickness- accommodation techniques including hybrid thickness-accommodation techniques and the split vertextechniquearepresentedanddiscussed. Thesetechniquesenablenewcapabilitiesofthickness- accommodation in origami adapted design. Thickness-accommodation techniques have been de- veloped in the context of developable origami patterns and the application of these techniques to non-developable patterns is introduced here. The capability of non-developable thick origami is demonstratedinanapplicationexampleofadeployablelocomotivenose-fairing. Keywords: Origami,DeployableMechanisms,CompliantMechanisms ACKNOWLEDGMENTS I would first like to acknowledge and express appreciation for my graduate committee members Dr. Larry Howell, Dr. Spencer Magleby, and Dr. Daniel Maynes for their expertise, inspiration,andguidancethroughouttheprocessofmyresearch. Iwouldalsoliketoacknowledge andthankDr. RobertLangforhisinspirationandcollaborativeeffortsinmyresearch. I would also like to acknowledge and express thanks to the many members of the Compli- ant Mechanisms Research Group (CMR) who have helped me with my research and collaborated on the papers that are presented here. Namely I would like to thank Erica Crampton for her col- laboration on the thick origami review paper and locomotive fairing project, Chad Stucki and Jeff Niven for their collaboration on the foldable fairing project, Alden Yellowhorse for his collabora- tion on the non-developable origami work, and Michael Morgan for his work on the offset-panel technique which led into my work on hybrid-thickness-accommodation techniques. I would also liketothanktheothermembersoftheCMRwhoIhavehadtheprivilegeofworkingtogetherwith onvariousprojectsandpublicationsthatarenotincludedinthisthesis. Finally I would like to thank my family for their continued support and encouragement throughout my schooling. I would like to express appreciation for my wife Ann for her love, support, and patience with me on this journey. Her determination to help me become a better personiswhatpersuadedmetopursuegraduateschool. This work is based upon research supported by funding from the National Science Foun- dation and the Air Force Office of Scientific Research under Grant No. 1240417. Any opinions, findings,andconclusionsorrecommendationsexpressedinthisthesisarethoseoftheauthorsand donotnecessarilyreflecttheviewsoftheNationalScienceFoundation. TABLEOFCONTENTS LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter2 AReviewofThickness-AccommodationTechniques . . . . . . . . . . . . 4 2.1 TaperedPanelsTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 OffsetPanelTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 HingeShiftTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 DoubledHingeTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 RollingContactsTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 MembraneTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 StrainedJointTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter3 HybridTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 CombiningTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 RollingContact/DoubledHingeComposite . . . . . . . . . . . . . . . . . . . . . 24 3.3 OffsetPanel/HingeShiftHybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 OffsetPanel/DoubledHingeHybrid . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 DoubledHinge/HingeShiftHybrid . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6 OtherHybridandCompositeTechniques . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter4 Split-VertexTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Split-VertexTechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.1 CompatiblePatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.2 SplittingCreases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.3 SplitAngles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.4 SplitDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.5 AddressingIntersection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.6 ApplyingtheSplit-VertexTechnique . . . . . . . . . . . . . . . . . . . . . 44 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Chapter5 Thickness-AccommodationinNon-DevelopableOrigami . . . . . . . . . . 50 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Non-developableorigami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.4 Non-developableThickOrigami . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4.1 TaperedandOffset-Paneltechniques . . . . . . . . . . . . . . . . . . . . . 54 iv 5.4.2 Axis-shifttechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4.3 Split-vertextechnique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Chapter6 DesignofanOrigami-InspiredDeployableAerodynamic LocomotiveFairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.1 ThickOrigami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4 ConceptGeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.5 ConceptEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.5.1 Flat-panel-basedconcept . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.5.2 Fabric-basedconcept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6 ConceptSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.7 DesignOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.8 FinalFairingDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.9 DesignValidationthroughFull-ScalePrototype . . . . . . . . . . . . . . . . . . . 78 6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Chapter7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 v LISTOFTABLES 4.1 Comparisonofdifferentattributesofsomethickness-accommodationtechniques. . 47 vi LISTOFFIGURES 2.1 TaperedpanelstechniqueappliedtotheMiura-oripattern. . . . . . . . . . . . . . 5 2.2 Thetaperedpanelstechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Diagramdetailingthelengthofapanel’staper. . . . . . . . . . . . . . . . . . . . 6 2.4 Theoffsetpaneltechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Asingleoffsetpanelvertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.6 Thehingeshifttechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.7 AthickfoldingvertexdemonstratedbyHobermanfortheMiura-oripattern. . . . 10 2.8 Photosofathickenedrigidly-foldablearcpatternprototypecreatedusingsymmet- ricdegree-4verticesshownmovingfromflattofolded. . . . . . . . . . . . . . . . 11 2.9 TheslidinghingeapproachdemonstratedbyTrautzetal. . . . . . . . . . . . . . . 11 2.10 AthickfoldingvertexdemonstratedbyDeTemmermanfortheYoshimurapattern. 11 2.11 Photos of a thick folding Yoshimura pattern prototype comprised of symmetric degree6vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.12 A thick rigidly foldable square twist developed using the generalized hinge shift techniqueofChenetal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.13 AgeneralizedthickfoldingvertexdemonstratedbyChenetal. . . . . . . . . . . . 14 2.14 Thedoubledhingetechnique(offsetcreaseimplementation). . . . . . . . . . . . . 15 2.15 An offset crease implementation of the doubled hinge technique demonstrated for asingledegree-4vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.16 Therollingcontactstechnique(SORCEimplementation). . . . . . . . . . . . . . . 16 2.17 AprototypeofthickvertexutilizingSORCEtechniquedemonstratedbyLangetal. 18 2.18 Themembranetechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.19 Thestrainedjointtechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.20 Thestrainedjointtechniqueappliedtoadegree4vertex. . . . . . . . . . . . . . . 21 3.1 An implementation of the doubled hinge technique where the vertex is only split alongtheprimaryfoldaxis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Arollingcontact/doubledhingecompositevertexwheretraditionalhingesareused togetherwithrollingcontactjoints. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Aprototypeofrollingcontact/doubledhingecompositevertex. . . . . . . . . . . . 25 3.4 Theoffsetpanel/hingeshifthybridtechnique. . . . . . . . . . . . . . . . . . . . . 25 3.5 Apatternconsistingoftwodegree-4vertices. . . . . . . . . . . . . . . . . . . . . 26 3.6 Anoffsetpanel/hingeshifthybridmechanism. . . . . . . . . . . . . . . . . . . . . 27 3.7 AYoshimurapatterncreatedusingoffsetpanel/hingeshifthybridtechniqueshown deployedandfolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.8 Abird-basepatterncreatedusingoffsetpanel/hingeshifthybridtechnique. . . . . 28 3.9 Atwo-vertexpatternwheretheleftvertexhasthecreasedoubled. . . . . . . . . . 28 3.10 A hybrid mechanism where the right vertex utilizes the offset panel technique and theleftvertexutilizesthedoubledhingetechnique. . . . . . . . . . . . . . . . . . 29 3.11 Adoubledhinge/hingeshifthybridmechanism. . . . . . . . . . . . . . . . . . . . 30 4.1 Adegree4vertexwithsectorandfoldangleslabeled. . . . . . . . . . . . . . . . 33 4.2 Anonflat-foldabledegree4vertexinitsfoldedstatewithfoldangleslabeled. . . . 34 vii 4.3 Theoffset-creasetechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 Thesplit-vertextechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.5 A comparison of the (a) offset-crease technique and (b) split-vertex technique for asinglevertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6 Asymmetric,split-crease-compatible,two-vertexsystem(left)andanon-symmetric, non-compatible,two-vertexsystem(right). . . . . . . . . . . . . . . . . . . . . . . 38 4.7 Splitting of a degree 4 vertex. Flat folding un-split single vertex (left) and split vertexwithnewparameterslabeled(right). . . . . . . . . . . . . . . . . . . . . . 38 4.8 Fold angles γ and γ as a function of split angle β for the example vertex shown 1 3 1 inFigure4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.9 Spacer angle µ as a function of split angle β for the example vertex shown in 1 Figure4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.10 Splitdistancesd andd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1 2 4.11 Split-vertextechniquewithalternativeinterferenceaccommodationmethod. . . . . 44 4.12 Split-vertextechniqueappliedtohexagonpattern. . . . . . . . . . . . . . . . . . . 46 4.13 CADmodelofsplit-vertexhexagonpatterngoingthroughfoldingmotion. . . . . . 46 4.14 Monolithicprototypeofsplit-vertexhexagonpatternmachinedoutofpolypropylene. 46 4.15 Split-vertextechniqueappliedtobirdbasepattern. . . . . . . . . . . . . . . . . . 47 4.16 Prototype of split-vertex bird base thick origami mechanism fabricated from foam boardandredpolypropylenetape,demonstratingaflatsurfacewithnoholes. . . . 47 4.17 Rigidly-foldable square patterns realized using the split-vertex technique. Top: square twist based fold pattern. Bottom: straight-major square-twist pattern. The redsurfacedemonstratestheabilitytocreateaflatsurfacewithnoholes. . . . . . . 48 5.1 A developable degree-4 vertex in its unfolded state (left) and partially folded state (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 Anunder-developeddegree-4vertexgoingthroughitsfoldingmotion. . . . . . . . 53 5.3 Anover-developeddegree-4vertexgoingthroughitsfoldingmotion. . . . . . . . . 53 5.4 Anunder-developedhexagonpatternmodifiedusingtheoffset-paneltechnique. . . 55 5.5 Anunder-developedboxpatternmodifiedusingtheoffset-paneltechnique. . . . . 56 5.6 Anexampleaxis-shiftvertex. Hingesareindicatedbyreddashedlines. . . . . . . 57 5.7 A symmetric-compliment-type Bennett linkage where opposing twist angles are notequalbutarecompliments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.8 A symmetric Bennett linkage where opposing links have equal lengths and twist angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.9 Foam-boardprototypeofsymmetric-non-developable-thicktube. . . . . . . . . . . 58 5.10 The three different linkages used in the symmetric-thick-origami tube. Left: an under-developed-traditional-Bennett linkage. Center: a developable compliment- typeBennettlinkage. Right: anover-developed-traditional-Bennettlinkage. . . . . 59 5.11 Foam-boardprototypeofnon-symmetricnon-developable-thicktube. . . . . . . . 59 5.12 Eggboxpatterncomprisedofover-developedBennettlinkagesandunder-developed sphericallinkages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.13 Eggboxinspirednon-developabletubecomprisedofexcess-vertexBennetlinkages anddeficient-vertexsphericallinkages. . . . . . . . . . . . . . . . . . . . . . . . . 61 5.14 Split-verteximplementationofanon-developablehexagonpattern. . . . . . . . . . 62 viii 6.1 Initial concept for an origami-inspired deployable fairing based on rigid folding panels. Left: The fairing in its deployed state. Right: the fairing in its stowed (folded)state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2 Adegree-4vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3 Anexampleoffset-panelvertex. Hingesareindicatedbyreddashedlines. . . . . . 68 6.4 Anexampleaxis-shiftvertex. Hingesareindicatedbyreddashedlines. . . . . . . 69 6.5 Designvolumeforthedeployedfairing. Usableareaishighlightedinyellow. . . . 69 6.6 Design volume for the fairing in the stowed configuration. Usable area is high- lightedinyellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.7 Fabric-based design concepts. Left: inflatable fairing concept sketch. Right: tension-fabric-basedfairingconcept. . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.8 Proof-of-conceptprototypeofthenon-developableorigami-basedflatpaneldesign. 72 6.9 Scaledprototypeoftension-fabricconcept. . . . . . . . . . . . . . . . . . . . . . 73 6.10 Parametersusedinthefirststudy(left)andthesecondstudy(right). . . . . . . . . 74 6.11 OptimizedshapeofthefirstCFDstudy. . . . . . . . . . . . . . . . . . . . . . . . 74 6.12 OptimizedshapeofthesecondCFDstudy. . . . . . . . . . . . . . . . . . . . . . . 75 6.13 Simplified shape that gives performance similar to the curved shape of the second study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.14 Fold pattern of the non-developable fairing design. Red lines indicate where the face panel attaches to the side panel. Green lines indicate where the panels attach totheframe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.15 Eighth-scaleprototypeconstructedfromsheetmetal. . . . . . . . . . . . . . . . . 77 6.16 Composite high-strength steel and HDPE foam sandwich panel selected as the panelmaterialforthefullscalefairingdesign. . . . . . . . . . . . . . . . . . . . . 78 6.17 Full-scale prototype on a freight locomotive shown in both the stowed configura- tion(right)anddeployedconfiguration(right). Photohasbeenmodifiedtoremove locomotiveidentity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.18 Thetopofthefairingstands3.6meterstallfromtheground. An158cmtallperson providesavisualindicationofthefairingsize. Photohasbeenmodifiedtoremove locomotiveidentity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ix

Description:
veloped in the context of developable origami patterns and the application of these . Thickness-Accommodation in Non-Developable Origami . Material and origami crease pattern selection occur first. Mate- rial selection holds
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.