Developing and Implementing Advanced Optical Diagnostics for the Investigation of Fuel and Flow Effects on Impinging Jet Flames Miss Chloe Jo McDaid Combustion and Flow Diagnostics Research Group Department of Mechanical Engineering This thesis is submitted to the University of Sheffield for the degree of Doctor of Philosophy, September 2013. Declaration The work presented in this thesis is that of the Author and has not been submitted for any other award or degree at the University of Sheffield or any other university or institution. Where other sources of information or help from other parties has been used this has been acknowledged. i Dedication For my late great nephew: Giovanni, my great niece: Isabella, and my nieces and nephews: Adam, Somma, Mason, Aidan, Elise, Sophia, Sonny and Tommy and those yet to come. ii Acknowledgements I would first of all like to thank my supervisor, Prof. Yang Zhang, for his continued support and expertise throughout my PhD studies with regards to experimentation, writing and organisation. Without his assistance this would not have been possible. In addition, I would like to thank my second supervisor, Dr Robert Woolley for his additional support and for his computational expertise. I would also like to thank my colleagues in the Combustion and Flow Diagnostics research group; Hua Wei Kevin Huang, Hussain Saeed, Qian Wang, Li-Wei Chen, Jason Yang, Paco Carranza Ch and Zhen Ma for their support and cooperation in laboratory work and for making my time during my PhD very enjoyable. I would like to thank the University technicians for helping me with the design and building of laboratory equipment and safety aspects of the laboratory, and the University staff for their help with placing orders and general difficulties encountered. In addition, I would like to thank the undergraduate and MSc students, Jie Zhao, Xuan Jiang and Yiran Wang who assisted me with some experiments. I would like to thank my parents Annette and Julian Dunn, who have given me constant love, support and encouragement throughout my PhD studies and before, and without whom this thesis could not have been written. I would also like to thank my partner Aidan for always believing in me, and my siblings, step-siblings and siblings-in-law; Ella, Alex, Rowena, Layla, Melissa, Sammie, Verena, Jimmy, Joe, Benjamin, Katie, Mark, Steve, Laura, Chloe and Emily, for always supporting and encouraging me and giving me advice and care when I needed it. I would also like to thank all of my family and friends for their encouragement. I would like to thank the project’s collaborative partners at the University of Lancaster (Prof. Xi Jiang, Ranga Dinesh and Daniel Mira Martinez), Xi’an Jiaotong University (Prof. Zuohua Huang and Jin Fu), Tsinghua University (Prof. Min Zhu) and Eindhoven University of Technology (Prof. Jeroen van Oijen), and industrial partners Siemens, Eon and BP. Finally I would like to thank EPSRC for funding through the grant No. EP/G063044/1 and for the loaning of equipment. It is part of the Energy Programme which is an RCUK cross-council initiative led by EPSRC and contributed to by ESRC, NERC, BBSRC and STFC. iii Publications C. McDaid, and Y. Zhang, “Wall temperature measurements using a thermal imaging camera with temperature dependent emissivity corrections,” Meas. Sci. Technol. Vol. 22, 125503 (8pp), 2011. C. McDaid, J. Zhou, and Y. Zhang, “Experimental observations of the complex flame propagations initiated at different locations of an impingement configuration,” Fuel, Vol. 103, pp. 783-791, 2013. iv Abstract Experimental diagnostic techniques have been utilised and developed to investigate the flame wall interaction for impinging flames of propane, methane, hydrogen and syngas. Thermal imaging has been used to evaluate the plate temperatures and radiation losses at steady state. A methodology has been developed for temperature dependent emissivity materials. Schlieren and direct imaging have been used to visualise flame shapes and flow structure. A methodology has been developed to quantify the relative effects of visual turbulent structures on the flame wall interaction. High speed schlieren has been used to assess the time dependent flame front propagation following ignition at various ignition locations. The combination of these techniques has allowed the flame wall interaction to be analysed for fuel composition, thermal loading, equivalence ratio, nozzle-to-plate distance, Reynolds number, geometry and fuel exit velocity. It has been found that fuel composition significantly affects the wall temperature profiles even at similar nozzle conditions. Mixing in different regions of the impingement configuration caused significant differences in the wall temperature profiles for the different fuels due to differences in diffusivity and laminar flame speed. Syngas premixed flames produce similar wall temperature profiles near the lift-off limit but at different equivalence ratios and Reynolds numbers, due to the similar turbulence shown in the schlieren images. Plate material and nozzle-to-plate distance significantly affected the wall temperature profiles. Radiation losses from the plate helped to explain the differences in heat transfer for the different conditions. Delays in the initial downwards propagation were observed for the hydrogen flames. The competing factors of the upstream propagation and heat production, causing decelerations and accelerations of the flame front respectively, differed significantly for different fuels and conditions. The propagation of the flame front immediately after ignition was observed to be very complex, changing significantly for relatively small changes in nozzle conditions. v Table of Contents Table of Contents Declaration ........................................................................................................................ i Dedication ........................................................................................................................ ii Acknowledgements ......................................................................................................... iii Publications ..................................................................................................................... iv Abstract ............................................................................................................................ v Table of Contents ........................................................................................................... vi Nomenclature................................................................................................................ xiv List of Tables ................................................................................................................. xx List of Figures .............................................................................................................. xxii 1. Introduction ............................................................................................................. 1 1.1. Motivations ......................................................................................................... 1 1.2. Aims and Objectives .......................................................................................... 3 1.3. Thesis Outline ..................................................................................................... 4 2. Literature Review.................................................................................................... 6 2.1. Introduction ........................................................................................................ 6 2.2. Combustion Theory ............................................................................................ 6 2.2.1. Flames ......................................................................................................... 6 2.2.1.1. Flame Definition .................................................................................. 6 2.2.1.2. Flame Classifications ........................................................................... 8 2.2.1.2.1. Combustion Properties ...................................................................... 9 2.2.1.2.2. Flow Properties ............................................................................... 14 2.2.1.3. Ignition and Flame Propagation ......................................................... 17 2.2.1.3.1. Ignition Definition .......................................................................... 17 2.2.1.3.2. Flame Propagation Parameters ....................................................... 18 2.2.2. Impinging Flames ..................................................................................... 22 2.2.2.1. Structure ............................................................................................. 22 2.2.2.2. Heat Transfer Mechanisms ................................................................ 26 vi Table of Contents 2.2.3. Conclusions ............................................................................................... 31 2.3. Experimental Diagnostic Techniques ............................................................... 31 2.3.1. Introduction ............................................................................................... 31 2.3.2. Heat Transfer ............................................................................................. 34 2.3.2.1. Thermal Imaging................................................................................ 34 2.3.2.1.1. Thermal Radiation .......................................................................... 34 2.3.2.1.2. Thermal Imaging Cameras .............................................................. 38 2.3.2.1.3. Applications and Limitations .......................................................... 42 2.3.2.2. Thermocouples................................................................................... 43 2.3.3. Flow Visualisation .................................................................................... 45 2.3.3.1. Schlieren ............................................................................................ 45 2.3.3.1.1. Light Refraction .............................................................................. 45 2.3.3.1.2. Principles ........................................................................................ 47 2.3.3.1.3. Applications and Limitations .......................................................... 50 2.3.3.2. Particle Image Velocimetry ............................................................... 52 2.3.3.2.1. Principles ........................................................................................ 52 2.3.3.2.2. Seeding ............................................................................................ 54 2.3.3.2.3. Applications and Limitations .......................................................... 57 2.3.4. Conclusions ............................................................................................... 58 2.4. Impinging Flames ............................................................................................. 59 2.4.1. Introduction ............................................................................................... 59 2.4.2. Impinging Flame Research ....................................................................... 59 2.4.3. Impinging Flame Configurations .............................................................. 77 2.4.4. Plate Effects .............................................................................................. 78 2.4.5. Parameters Affecting Flame Wall Interactions ......................................... 81 2.4.6. Fuel Effects ............................................................................................... 83 2.4.7. Flame Structure ......................................................................................... 84 2.4.8. Thermal Imaging ....................................................................................... 86 vii Table of Contents 2.4.9. Conclusions ............................................................................................... 88 2.5. Ignition and Flame Propagation ....................................................................... 90 2.5.1. Introduction ............................................................................................... 90 2.5.2. Flame Propagation Configurations ........................................................... 90 2.5.3. Flame Propagation in Jet Flames .............................................................. 92 2.5.4. Ignition and Flame Propagation in Impinging Flames .............................. 94 2.5.5. Conclusions ............................................................................................... 95 2.6. Literature Review Conclusions ........................................................................ 96 3. Experimental Setup and Methodologies ............................................................. 99 3.1. Introduction ...................................................................................................... 99 3.2. Rig Setup .......................................................................................................... 99 3.2.1. Burners ...................................................................................................... 99 3.2.2. Impingement Plates and Device .............................................................. 101 3.2.3. Fuel and Flow Control ............................................................................ 102 3.2.3.1. Fuels ................................................................................................. 102 3.2.3.2. Ignition ............................................................................................. 104 3.2.3.3. Mixing System ................................................................................. 104 3.2.3.4. Flow Controllers .............................................................................. 105 3.3. LabVIEW ....................................................................................................... 107 3.4. Schlieren ......................................................................................................... 110 3.4.1. Experimental Setup ................................................................................. 110 3.4.2. Impinging Flame Structure ..................................................................... 111 3.4.3. Wrinkle Scale Methodology ................................................................... 112 3.4.4. Flame Front Propagation ......................................................................... 114 3.5. Direct Imaging ................................................................................................ 119 3.5.1. Experimental Setup ................................................................................. 119 3.5.2. Comparison with Schlieren ..................................................................... 120 3.6. Thermal Imaging ............................................................................................ 121 viii Table of Contents 3.6.1. Experimental Setup ................................................................................. 121 3.6.2. ‘Flame Switch Off’ Method .................................................................... 123 3.6.3. Thermal Profiling .................................................................................... 125 3.6.4. Temperature Dependent Emissivity ........................................................ 128 3.7. Particle Image Velocimetry ............................................................................ 131 3.7.1. Experimental Setup ................................................................................. 132 3.7.2. Problems .................................................................................................. 133 3.8. Conclusions .................................................................................................... 135 4. Computations ...................................................................................................... 137 4.1. Introduction .................................................................................................... 137 4.2. Gaseq .............................................................................................................. 138 4.2.1. Description .............................................................................................. 138 4.3. CHEMKIN ..................................................................................................... 139 4.3.1. Description .............................................................................................. 139 4.3.2. Reaction Mechanisms ............................................................................. 143 4.3.3. Setup and Method ................................................................................... 144 4.4. Results ............................................................................................................ 147 4.4.1. Hydrocarbons .......................................................................................... 147 4.4.2. Hydrogen with Additions ........................................................................ 149 4.4.3. Syngas Compositions .............................................................................. 151 4.5. Conclusions .................................................................................................... 153 5. Results Part 1: Wall Temperature..................................................................... 155 5.1. Introduction .................................................................................................... 155 5.2. Effect of Reynolds Number and Thermal Loading ........................................ 155 5.2.1. Introduction ............................................................................................. 155 5.2.2. Experimental Conditions ......................................................................... 155 5.2.3. Diffusion Flames ..................................................................................... 156 5.2.4. Premixed Flames ..................................................................................... 157 ix
Description: