ebook img

Deterministic Chaos: An Introduction PDF

299 Pages·2005·6.565 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deterministic Chaos: An Introduction

Titelei Schuster·Just 09.12.2004 16:17 Uhr Seite 3 Heinz Georg Schuster and Wolfram Just Deterministic Chaos An Introduction Fourth, Revised and Enlarged Edition WILEY-VCH Verlag GmbH & Co. KGaA Titelei Schuster·Just 09.12.2004 16:17 Uhr Seite 4 Authors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher Prof. Dr. H. G. Schuster do not warrant the information contained in these Christian Albrecht University Kiel, Germany books, including this book, to be free of errors. Department of Theoretical Physics Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items Lecturer Wolfram Just may inadvertently be inaccurate. Queen Mary / University of London, United Kingdom School of Mathematical Sciences Library of Congress Card No.:applied for British Library Cataloging-in-Publication Data: A catalogue record for this book is available from the British Library Cover Picture Bibliographic information published by Detail of the “tail” in Plate IX (after Peitgen and Richter) Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be repro- duced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Printed in the Federal Republic of Germany Printed on acid-free paper Composition Michael Bär, Wiesloch Printing Strauss GmbH, Mörlenbach Bookbinding Litges & Dopf Buchbinderei GmbH, Heppenheim ISBN-13: 978-3-527-40415-5 ISBN-10: 3-527-40415-5 Contents TableofContents v Preface ix ColorPlates xiii 1 Introduction 1 2 ExperimentsandSimpleModels 7 2.1 ExperimentalDetectionofDeterministicChaos . . . . . . . . . . . . . . . 7 2.1.1 DrivenPendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Rayleigh–Be´nardSysteminaBox . . . . . . . . . . . . . . . . . . . 9 2.1.3 StirredChemicalReactions. . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 He´non–HeilesSystem . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 ThePeriodicallyKickedRotator . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 LogisticMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 He´nonMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 ChirikovMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 PiecewiseLinearMapsandDeterministicChaos 19 3.1 TheBernoulliShift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 CharacterizationofChaoticMotion . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 LiapunovExponent . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 InvariantMeasure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3 CorrelationFunction . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 DeterministicDiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 UniversalBehaviorofQuadraticMaps 33 4.1 ParameterDependenceoftheIterates . . . . . . . . . . . . . . . . . . . . . 35 4.2 PitchforkBifurcationandtheDoublingTransformation . . . . . . . . . . . 37 4.2.1 PitchforkBifurcations . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.2 Supercycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.3 DoublingTransformationandα . . . . . . . . . . . . . . . . . . . . 41 4.2.4 LinearizedDoublingTransformationandδ . . . . . . . . . . . . . . 43 vi Contents 4.3 Self-Similarity,UniversalPowerSpectrum,andtheInfluenceofExternalNoise 46 4.3.1 Self-SimilarityinthePositionsoftheCycleElements. . . . . . . . . 46 4.3.2 HausdorffDimension . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.3 PowerSpectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.4 InfluenceofExternalNoise . . . . . . . . . . . . . . . . . . . . . . 52 4.4 BehavioroftheLogisticMapforr∞≤r . . . . . . . . . . . . . . . . . . . 55 4.4.1 SensitiveDependenceonParameters. . . . . . . . . . . . . . . . . . 55 4.4.2 StructuralUniversality . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.3 ChaoticBandsandScaling . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 ParallelsbetweenPeriodDoublingandPhaseTransitions . . . . . . . . . . 61 4.6 ExperimentalSupportfortheBifurcationRoute . . . . . . . . . . . . . . . 64 5 TheIntermittencyRoutetoChaos 69 5.1 MechanismsforIntermittency . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.1 Type-IIntermittency . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.2 LengthoftheLaminarRegion . . . . . . . . . . . . . . . . . . . . . 73 5.2 Renormalization-GroupTreatmentofIntermittency . . . . . . . . . . . . . 75 5.3 Intermittencyand1/f-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 ExperimentalObservationoftheIntermittencyRoute . . . . . . . . . . . . 84 5.4.1 DistributionofLaminarLengths . . . . . . . . . . . . . . . . . . . . 84 5.4.2 Type-IIntermittency . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.3 Type-IIIIntermittency . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 StrangeAttractorsinDissipativeDynamicalSystems 89 6.1 IntroductionandDefinitionofStrangeAttractors . . . . . . . . . . . . . . . 89 6.1.1 Baker’sTransformation. . . . . . . . . . . . . . . . . . . . . . . . . 92 6.1.2 DissipativeHe´nonMap. . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2 TheKolmogorovEntropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.1 DefinitionofK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.2.2 ConnectionofK totheLiapunovExponents. . . . . . . . . . . . . . 97 6.2.3 AverageTimeoverwhichtheStateofaChaoticSystemcanbePredicted100 6.3 CharacterizationoftheAttractorbyaMeasuredSignal . . . . . . . . . . . 102 6.3.1 ReconstructionoftheAttractorfromaTimeSeries . . . . . . . . . . 103 6.3.2 Generalized Dimensions and Distribution of Singularities in the In- variantDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.3 GeneralizedEntropiesandFluctuationsaroundtheK-Entropy . . . . 115 6.3.4 Kaplan–YorkeConjecture . . . . . . . . . . . . . . . . . . . . . . . 120 6.4 PicturesofStrangeAttractorsandFractalBoundaries . . . . . . . . . . . . 122 7 TheTransitionfromQuasiperiodicitytoChaos 127 7.1 StrangeAttractorsandtheOnsetofTurbulence . . . . . . . . . . . . . . . . 127 7.1.1 HopfBifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.1.2 Landau’sRoutetoTurbulence . . . . . . . . . . . . . . . . . . . . . 128 7.1.3 Ruelle–Takens–NewhouseRoutetoChaos . . . . . . . . . . . . . . 129 7.1.4 PossibilityofThree-FrequencyQuasiperiodicOrbits . . . . . . . . . 131 7.1.5 Break-upofaTwo-Torus . . . . . . . . . . . . . . . . . . . . . . . . 133 Contents vii 7.2 UniversalPropertiesoftheTransitionfromQuasiperiodicitytoChaos. . . . 136 7.2.1 ModeLockingandtheFareyTree . . . . . . . . . . . . . . . . . . . 139 7.2.2 LocalUniversality . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2.3 GlobalUniversality . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.3 ExperimentsandCircleMaps . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.3.1 DrivenPendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.3.2 ElectricalConductivityinBariumSodiumNiobate . . . . . . . . . . 153 7.3.3 DynamicsofCardiacCells . . . . . . . . . . . . . . . . . . . . . . . 154 7.3.4 ForcedRayleigh–Be´nardExperiment . . . . . . . . . . . . . . . . . 156 7.4 RoutestoChaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.4.1 Crises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8 RegularandIrregularMotioninConservativeSystems 161 8.1 CoexistenceofRegularandIrregularMotion . . . . . . . . . . . . . . . . . 163 8.1.1 IntegrableSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.1.2 PerturbationTheoryandVanishingDenominators . . . . . . . . . . . 165 8.1.3 StableToriandKAMTheorem . . . . . . . . . . . . . . . . . . . . 166 8.1.4 UnstableToriandPoincare´–BirkhoffTheorem . . . . . . . . . . . . 167 8.1.5 HomoclinicPointsandChaos . . . . . . . . . . . . . . . . . . . . . 170 8.1.6 ArnoldDiffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.1.7 ExamplesofClassicalChaos . . . . . . . . . . . . . . . . . . . . . . 172 8.2 StronglyIrregularMotionandErgodicity . . . . . . . . . . . . . . . . . . . 174 8.2.1 CatMap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8.2.2 HierarchyofClassicalChaos . . . . . . . . . . . . . . . . . . . . . . 176 8.2.3 ThreeClassicalK-Systems . . . . . . . . . . . . . . . . . . . . . . . 180 9 ChaosinQuantumSystems? 183 9.1 TheQuantumCatMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 9.2 AQuantumParticleinaStadium . . . . . . . . . . . . . . . . . . . . . . . 186 9.3 TheKickedQuantumRotator . . . . . . . . . . . . . . . . . . . . . . . . . 187 10 ControllingChaos 193 10.1 StabilizationofUnstableOrbits . . . . . . . . . . . . . . . . . . . . . . . . 194 10.2 TheOGYMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 10.3 Time-DelayedFeedbackControl . . . . . . . . . . . . . . . . . . . . . . . 199 10.3.1 RhythmicControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 10.3.2 ExtendedTime-DelayedFeedbackControl . . . . . . . . . . . . . . 201 10.3.3 ExperimentalRealizationofTime-DelayedFeedbackControl . . . . 202 10.4 ParametricResonancefromUnstablePeriodicOrbits . . . . . . . . . . . . 203 11 SynchronizationofChaoticSystems 207 11.1 IdenticalSystemswithSymmetricCoupling . . . . . . . . . . . . . . . . . 207 11.1.1 On–OffIntermittency. . . . . . . . . . . . . . . . . . . . . . . . . . 208 11.1.2 Strongvs. WeakSynchronization . . . . . . . . . . . . . . . . . . . 209 11.2 Master–SlaveConfigurations . . . . . . . . . . . . . . . . . . . . . . . . . 210 viii Contents 11.3 GeneralizedSynchronization . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.3.1 StrangeNonchaoticAttractors . . . . . . . . . . . . . . . . . . . . . 212 11.4 PhaseSynchronizationofChaoticSystems . . . . . . . . . . . . . . . . . . 213 12 SpatiotemporalChaos 217 12.1 ModelsforSpace–TimeChaos . . . . . . . . . . . . . . . . . . . . . . . . 217 12.1.1 CoupledMapLattices . . . . . . . . . . . . . . . . . . . . . . . . . 217 12.1.2 CoupledOscillatorModels . . . . . . . . . . . . . . . . . . . . . . . 218 12.1.3 ComplexGinzburg–LandauEquation . . . . . . . . . . . . . . . . . 220 12.1.4 Kuramoto–SivashinskyEquation . . . . . . . . . . . . . . . . . . . . 220 12.2 CharacterizationofSpace–TimeChaos . . . . . . . . . . . . . . . . . . . . 221 12.2.1 LiapunovSpectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 12.2.2 Co-movingLiapunovExponent . . . . . . . . . . . . . . . . . . . . 223 12.2.3 ChronotopicLiapunovAnalysis . . . . . . . . . . . . . . . . . . . . 224 12.3 NonlinearNonequilibriumSpace–TimeDynamics . . . . . . . . . . . . . . 225 12.3.1 FullyDevelopedTurbulence . . . . . . . . . . . . . . . . . . . . . . 225 12.3.2 SpatiotemporalIntermittency. . . . . . . . . . . . . . . . . . . . . . 227 12.3.3 MolecularDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Outlook 231 Appendix 233 A DerivationoftheLorenzModel . . . . . . . . . . . . . . . . . . . . . . . . 233 B StabilityAnalysisandtheOnsetofConvectionandTurbulenceintheLorenz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 C TheSchwarzianDerivative . . . . . . . . . . . . . . . . . . . . . . . . . . 236 D RenormalizationoftheOne-DimensionalIsingModel . . . . . . . . . . . . 238 E DecimationandPathIntegralsforExternalNoise . . . . . . . . . . . . . . 240 F Shannon’sMeasureofInformation . . . . . . . . . . . . . . . . . . . . . . 243 F.1 InformationCapacityofaStore . . . . . . . . . . . . . . . . . . . . 243 F.2 InformationGain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 G PeriodDoublingfortheConservativeHe´nonMap . . . . . . . . . . . . . . 245 H UnstablePeriodicOrbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 RemarksandReferences 257 Index 283 Preface Since1994whenthelasteditionofthepresentmonographwaspublished,thefieldofNonlin- earSciencehasdevelopedtremendously. Itisnowadaysnolongerpossibletogiveacompre- hensibleintroductioninto,andabalancedoverviewofthedifferentbrancheswithinthisfield. Followingthegeneralpracticeofthepreviouseditionsitisthescopeofthisfourthaugmented edition to introduce aspects of Nonlinear Dynamics at a level which is accessible to a wide audience. Wehaveintensifiedandaddedthreenewtopics: – ControlofchaosisoneofthemostpopularbranchesofNonlinearScience. Asapartic- ularnewaspectwehaveincludedacomprehensivediscussionoftime-delayedfeedback controlwhichiswidelyusedinapplications. – Topicsinsynchronizationbecamerecentlyquitepopularfromafundamentalaswellas anappliedpointofview. Weintroducebasicconceptsaswellasnovelnotionslikephase synchronizationorstrangenonchaotic,attractors,atanelementarylevel. – Spatiotemporalchaoscoversawiderangeoftopics,fromclassicalfieldsinphysicssuch as hydrodynamics to current research topics in theoretical biophysics, which are com- monlyrelatedwiththenonlineardynamicsofalargenumberofdegreesoffreedom. We introduceherebasicfeaturesofrelevantmodelsystemsaswellasselectedconceptsfor quantitativeanalysis. Butourexpositionisfarfromcomplete. The fourth edition benefits from data and figures that have been provided by several col- leagues, inparticularbyR.Klages, J.Kurths, A.Pikovski, H.Posch, andM.Rosenblum. It is a pleasure to thank E. Scho¨ll for his kind hospitality during a stay at Berlin University of Technology,wherepartsoftheneweditionwerewritten. Weareindebtedtothepublisher,in particulartoDr. M.Ba¨randR.Schulz, fortheircontinualhelpinpreparingthemanuscript. Despite the remarkable support from various people the present edition could still contain mistakes. Weapologizeinadvanceforsuchinconsistenciesandweinvitethereadertoreport tousanydeficiencies. Kiel/London,October2004 H.G.Schuster,W.Just x Preface PrefacetotheThirdEdition Since the last edition of this book in 1989 the field of deterministic chaos has continued to grow. Withinthewealthofnewresultstherearethreemajortrends. – Unstableperiodicorbitshavebeenrediscoveredasbuildingblocksofchaoticdynamics, especiallythroughtheworkofCvitanovichetal. (1990). Theydevelopedanexpansion ofphysicalaveragesintermsofprimitivecycles(seealsoAppendixH). – Exploitingtheconceptofunstableperiodicorbits,Ott,GrebogiandYorkedemonstrated in1990thatdeterministicchaoscanbecontrolled.Theyfoundthatsmalltime-dependent changesinthecontrolparameterofthesystemcanstabilizepreviouslyunstableperiodic cyclesinsuchawaythatthesystembecomesnonchaotic(seeChapter10). – Therearenewtheoreticalandexperimentalresultsinthefieldofquantumchaoswhich aredescribedexcellentlyinthenewbooksbyGutzwiller(1990),Haake(1991)andRe- ichl(1992). During the preparation of the new edition, J. C. Gruel helped with the pictures of the new chapter, Mrs. H. Heimann typed the new text, M. Poulson and R. Wengenmayr from VCH Publishers took care of the editorial work. H. J. Stockmann and H. J. Stein contributed the fascinatingpicturesofsimulationsofquantumchaosinmicrowaveresonators. Iwouldliketo thankallthesepeoplefortheircooperationandpatience. Kiel,August1994 H.G.Schuster PrefacetotheSecondEdition Thisisarevisedandupdatedversionofthefirstedition, towhichnewsectionsonsensitive parameterdependence,fatfractals,characterizationofattractorsbyscalingindices,theFarey tree, and the notion of global universality have been added. I thank P. C. T. de Boer, J. L. Grant, P. Grassberger, W. Greulich, F. Kaspar, K. Pawelzik, K. Schmidt, and S. Smid for helpfulhintsandremarks,andMrs. AdlfingerandMrs. Boffofortheirpatienthelpwiththe manuscript. Kiel,August1987 H.G.Schuster PrefacetotheFirstEdition Daily experience shows that, for many physical systems, small changes in the initial condi- tionsleadtosmallchangesintheoutcome. Ifwedriveacarandturnthesteeringwheelonly alittle,ourcoursewilldifferonlyslightlyfromthatwhichthecarwouldhavetakenwithout thischange. Buttherearecasesforwhichtheoppositeofthisruleistrue: Foracoinwhichis placedonitsrim,aslighttouchissufficienttodeterminethesideonwhichitwillfall. Thus Preface xi thesequenceofheadsandtailswhichweobtainwhentossingacoinexhibitsanirregularor chaotic behavior in time, because extremely small changes in the initial conditions can lead tocompletelydifferentoutcomes. Ithasbecomeclearinrecentyears,partlytriggeredbythe studiesofnonlinearsystemsusinghigh-speedcomputers,thatasensitivedependenceonthe initialconditions,whichresultsinachaotictimebehavior,isbynomeansexceptionalbutis a typical property of many systems. Such behavior has, for example, been found in period- ically stimulated cardiac cells, in electronic circuits, at the onset of turbulence in fluids and gases,inchemicalreactions,inlasers,etc. Mathematically,allnonlineardynamicalsystems withmorethantwodegreesoffreedom, i.e.,, especiallymanybiological, meteorologicalor economic models, can display chaos and, therefore, become unpredictable over longer time scales.“Deterministicchaos”isnowaveryactivefieldofresearchwithmanyexcitingresults. Methodshavebeendevelopedtoclassifydifferenttypesofchaos,andithasbeendiscovered that many systems show, as a function of an external control parameter, similar transitions from order to chaos. This universal behavior is reminiscent of ordinary second-order phase transitions, andtheintroductionofrenormalizationandscalingmethodsfromstatisticalme- chanics has brought new perspectives into the study of deterministic chaos. It is the aim of thisbooktoprovideaself-containedintroductiontothisfieldfromaphysicist’spointofview. Thebookgrewoutofaseriesoflectures,whichIgaveduringthesummertermsof1982and 1983 at the University of Frankfurt, and it requires no knowledge which a graduate student in physics would not have. A glance at the table of contents shows that new concepts such astheKolmogoroventropy,strangeattractors,etc.,ornewtechniquessuchasthefunctional renormalizationgroup,areintroducedatanelementarylevel. Ontheotherhand,Ihopethat there is enough material for research workers who want to know, for example, how deter- ministic chaos can be distinguished experimentally from white noise, or who want to learn howtoapplytheirknowledgeaboutequilibriumphasetransitionstothestudyof(nonequilib- rium) transitions from order to chaos. During the preparation of this book the manuscripts, preprintsanddiscussion,theremarksofG.Eilenberger,K.Kehr,H.Leschke,W.Selke,and M. Schmutz were of great help. P. Berge, M. Dubois, W. Lauterborn, W. Martienssen, G. Pfisterandtheircoworkerssuppliedseveral,partlyunpublished,picturesoftheirexperiments. H. O. Peitgen, P. H. Richter and their group gave permission to include some of their most fascinatingcomputerpicturesinthisbook(seecoverandSection6.4). Allcontributionsare gratefullyappreciated.Furthermore,IwanttothankW.Greulich,D.Hackenbracht,M.Heise, L.L.Hirst,R.Liebmann,I.Neil,andespeciallyI.Procacciaforcarefullyreadingpartsofthe manuscript and for useful criticism and comments. I also acknowledge illuminating discus- sionswithV.Emery,P.Grassberger,D.Grempel,S.Grossmann,S.Fishman,andH.Horner. It is a pleasure to thank R. Hornreich for the kind hospitality extended to me during a stay attheWeizmannInstitute,whereseveralchaptersofthisbookwerewritten,withthesupport oftheMinervafoundation. Lastbutnotleast, IthankMrs. BoffoandMrs. Knollefortheir excellentassistanceinpreparingtheillustrationsandthetext. Frankfurt,October1984 H.G.Schuster Legends to Plates I–XX ManyoftheseplatesarepartofChapter6. Accordingly,referencesmentionedinthelegends aretobefoundonpages89–125. I. Biperiodic flow in a Be´nard experiment. Figs. 1–8 show interferometric pictures of a Be´nardcellinthebiperiodicregime; thatis, therearetwoincommensuratefrequencies inthepowerspectrum(seealsopages2.1.2–2.1.2).Thetimebetweensuccessivepictures is10s. Thefirstperiodlasts40safterwhichthe“mouth”inthemiddleofthepictures repeatsitself(seeFigs.1and5).Butthedetails,e.g.,intheupperrightcornersofFigs.1 and5arenotthesame;thatis,themotionisnotsimplyperiodic. (Fromafilmtakenby P.BergeandM.Dubois,CENSaclay,Gif-sur-Yvette,France.) [pagexv] II. Nonlinearelectronicoscillator (seealsoFig.46onpage66):Thecurrent-versus-voltage phaseportraits(atthenonlineardiode)areshownontheoscilloscopescreen.Forincreas- ingdrivingvoltageoneobservestheperiod-doublingroute.Thenonlinearityofthediode thathasbeenusedinthisexperimentdiffersfromeq.4.119. (PicturetakenbyW.Meyer- Ilse,afterKlinkeretal.,1984.) [pagexvi] III. Taylor instability. a) Formation of rolls, b) the rolls start oscillating, c) a more com- plicated oscillatory motion, d) chaos. (After Pfister, 1984; see also pages 133–136.) [pagexvi] IV. Disturbed heartbeats. The voltage difference (black) across the cell membrane of one cellofanaggregateofheartcellsfromembryonicchickenshowsa)phaselockingwith thestimulatingpulseandb)irregulardynamics,displayingescapeorinterpolationbeats if the time between successive periodic stimuli (red) is changed from 240 ms in a) to 560msinb). (AfterGlassetal.,1983;seealsopage7.3.3.) [pagexvii] V. ChaoticelectricalconductioninBSNcrystals. Thebirefringencepatternofaferroelec- tricBSNcrystalshowsdomainwallswhichmirrorthechargetransportneartheonsetof chaos(seealsoFig.116onpage153). Forclarity, thedarklinesintheoriginalpattern havebeenredrawninred. (AfterMartinetal.,1984.) [pagexvii] VI. Power spectra of cavitation noise: The noise amplitude is depicted in colors, and the inputpressureisincreasinglinearlywithtime. Oneobserves(withincreasingpressure) asubharmonicroute f → f /2→ f /4→chaos. Thispictureisthecoloredversionof 0 0 0 Fig. 47c on page 67. (Picture taken by E. Suchla, after Lauterborn and Cramer, 1981.) [pagexviii] VII. TheCassinidivision. TheringofSaturn(a)showsamajorgap(b),theso-calledCassini division, because the motion on this orbit is unstable (see also Fig. 142 on page 174). DeterministicChaos:AnIntroduction,FourthEdition.H.-G.SchusterandW.Just Copyright(cid:1)c2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40415-5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.