ebook img

Deterministic and Random Evolution PDF

200 Pages·2013·1.675 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deterministic and Random Evolution

MATHEMATICS RESEARCH DEVELOPMENTS D R ETERMINISTIC AND ANDOM E VOLUTION No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. M R D ATHEMATICS ESEARCH EVELOPMENTS Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the e-book tab. MATHEMATICS RESEARCH DEVELOPMENTS D R ETERMINISTIC AND ANDOM E VOLUTION JENS LORENZ EDITOR New York Copyright © 2013 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. For permission to use material from this book please contact us: Telephone 631-231-7269; Fax 631-231-8175 Web Site: http://www.novapublishers.com NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: (cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:25)(cid:21)(cid:25)(cid:20)(cid:27)(cid:16)(cid:19)(cid:21)(cid:19)(cid:16)(cid:27) (eBook) Published by Nova Science Publishers, Inc. † New York Contents Preface ix 1 Introduction 1 2 Basic Concepts 5 1. Initial Value Problems for ODEs . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Discrete–Time Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. Continuous vs. Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4. Random Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Deterministic Systems:Outline of Advanced Topics 13 1. Planetary Motion: Example for Determinism . . . . . . . . . . . . . . . . . 13 2. Reversibility in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3. Sensitive Dependence on Initial Conditions . . . . . . . . . . . . . . . . . . 14 4. Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5. Dependence on Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6. Variation on Different Time Scales . . . . . . . . . . . . . . . . . . . . . . . 17 4 Planetary Motion 21 1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2. The Two Body Problem: Reduction to One Bodyin a Central Field . . . . . 22 3. One Body in a Central Field . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4. The Equation for an Ellipse in Polar Coordinates . . . . . . . . . . . . . . . 26 5. The Kepler Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6. Kepler’s Third Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7. Time Dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8. Bessel Functions via a Generating Function:Integral Representation. . . . . 37 9. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 vi Jens Lorenz 5 Is Time Reversible? 41 1. Reversibility for the Two Body Problem . . . . . . . . . . . . . . . . . . . . 41 2. Reversibility: General Definition . . . . . . . . . . . . . . . . . . . . . . . . 42 3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 The Bernoulli Shift and the Logistic Map 45 1. The Bernoulli Shift: Definition . . . . . . . . . . . . . . . . . . . . . . . . . 45 2. The Bernoulli Shift: Dynamical Properties . . . . . . . . . . . . . . . . . . . 47 3. The Logistic Map and Its Relation tothe Bernoulli Shift . . . . . . . . . . . 49 4. Average Behavior of the Logistic Map . . . . . . . . . . . . . . . . . . . . . 50 7 Evolution on Two Time–Scales 55 1. Fast and Slow Time Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2. Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3. A Difficult Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8 Stability and Bifurcations 61 1. Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2. Exponential Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3. Logistic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4. The Delayed Logistic Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5. Parameter Dependent Evolution and Hysteresis . . . . . . . . . . . . . . . . 70 9 Scripts 77 1. Script for Logistic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2. Scripts for the Delayed Logistic Map . . . . . . . . . . . . . . . . . . . . . . 78 3. Scripts for Parameter Dependent Evolutionand Hysteresis . . . . . . . . . . 79 10 Two Oscillators: Periodicity,Ergodicity, and Phase Locking 83 1. The Circle and the Two–Torus . . . . . . . . . . . . . . . . . . . . . . . . . 83 2. Uncoupled Oscillators: Periodic Solutions . . . . . . . . . . . . . . . . . . . 85 3. Uncoupled Oscillators: Ergodicity. . . . . . . . . . . . . . . . . . . . . . . . 88 4. Time Average Equals Space Average for a Circle Map . . . . . . . . . . . . 89 4.1. A Poincar´e Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2. Ergodicity of a Circle Map . . . . . . . . . . . . . . . . . . . . . . . 90 5. Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11 The Gambler’s Ruin Problem 101 1. Description of the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2. Some Questions and Numerical Realization . . . . . . . . . . . . . . . . . . 102 3. The Transition Matrix P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4. Evolution of Probability Density . . . . . . . . . . . . . . . . . . . . . . . . 106 Contents vii 5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7. Script: Evolving the Probability Densityfor Gambler’s Ruin . . . . . . . . . 109 12 Gambler’s Ruin: Probabilities and Expected Time 111 1. Probability of Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2. Probability of Winning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3. Expected Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4. The Matrix View: Limit of Probability Densities . . . . . . . . . . . . . . . 115 4.1. The Eigenvalues of P . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2. Convergence of Probability Density Vectors . . . . . . . . . . . . . . 119 13 Stochastic Model of a Simple Growth Process 121 1. Growth Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2. The Forward Kolmogorov Equations . . . . . . . . . . . . . . . . . . . . . . 122 3. Solution of the Forward Kolmogorov Equations . . . . . . . . . . . . . . . . 124 4. The Sum of the p (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 j 5. The Expected Value of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 t 5.1. The Expected Value of a Discrete Random Variable . . . . . . . . . 130 5.2. The Expected Value E(X ) . . . . . . . . . . . . . . . . . . . . . . . 131 t 6. The Variance of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 t 6.1. The Variance of a Discrete Random Variable . . . . . . . . . . . . . 134 6.2. The Variance Var(X ) . . . . . . . . . . . . . . . . . . . . . . . . . . 135 t 7. Statistics of Interevent Times . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.1. Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.2. Statistical Law for Interevent Times . . . . . . . . . . . . . . . . . . 139 8. Numerical Realization of Random Evolution . . . . . . . . . . . . . . . . . . 141 9. Figures and Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 14 Introduction to Kinetic Theory 149 1. Boyle, Bernoulli, Maxwell, and Sadi Carnot . . . . . . . . . . . . . . . . . . 149 2. Daniel Bernoulli: Pressure, Volume,and Particle Velocity . . . . . . . . . . . 151 2.1. The Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 3. The Maxwell–Boltzmann Distribution . . . . . . . . . . . . . . . . . . . . . 154 3.1. Assumptions Leading to Maxwell’s Distribution . . . . . . . . . . . . 156 3.2. Derivation of Maxwell’s Distribution . . . . . . . . . . . . . . . . . . 156 3.3. Relation between K and T . . . . . . . . . . . . . . . . . . . . . . . 158 4. Optimal Heat Engines: Carnot’s Cycle . . . . . . . . . . . . . . . . . . . . . 160 4.1. Heat Energy and Mechanical Energy . . . . . . . . . . . . . . . . . . 160 4.2. Carnot’s Heat Engine: Preparations . . . . . . . . . . . . . . . . . . 161 4.3. The Carnot Cycle and the Direction of Time . . . . . . . . . . . . . 165 viii Jens Lorenz 15 Random Evolution: From Order to Chaos 171 1. Random Evolution of Macro States . . . . . . . . . . . . . . . . . . . . . . . 171 2. Macro States and Micro States . . . . . . . . . . . . . . . . . . . . . . . . . 175 3. Back to the Ordered State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References Index 185

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.