Astronomy&Astrophysicsmanuscriptno.ms˙AA0327 February2,2008 (DOI:willbeinsertedbyhandlater) Determining the equation of state of dark energy from angular size of compact radio sources and X-ray gas mass fraction of galaxy clusters 4 0 Zong-HongZhu1,Masa-KatsuFujimoto1,andXiang-TaoHe2 0 2 n 1 NationalAstronomicalObservatory,2-21-1,Osawa,Mitaka,Tokyo181-8588,Japan a J e-mail:[email protected] [email protected] 8 2 DepartmentofAstronomy,BeijingNormalUniversity,Beijing100875,China 1 e-mail:[email protected] v 5 Received0000,0000;accepted0000,0000 9 0 1 Abstract. Usingrecent measurements of angular sizeof high-z milliarcsecond compact 0 4 radiosourcescompiledbyGurvits,Kellermann&Frey(1999)andX-raygasmassfraction 0 / of galaxy clusterspublished by Allen et al. (2002,2003), we explore their bounds on the h p equationofstate,ωx ≡ px/ρx,ofthedarkenergy,whoseexistencehasbeencongruously - o suggestedbyvariouscosmologicalobservations.Werelaxetheusualconstraintωx ≥ −1, r t andfindthatcombiningthetwodatabasesyieldsanontriviallowerboundonωx.Underthe s a assumptionofaflatuniverse,weobtainabound−2.22<ω <−0.62at95.4%confidence x : v level.The95.4%confidenceboundgoesto−1≤ω <−0.60whentheconstraintω ≥−1 i x x X isimposed. r a Key words. cosmological parameters — cosmology: theory — distance scale — radio galaxies:general—X-ray:galaxies:clusters 1. Introduction One of the most remarkablecosmologicalfindingsof recent years is, in additionalto the cold dark matter (CDM), the existence of a componentof dark energy(DE) with negativepressure inouruniverse.Itismotivatedtoexplaintheaccelerationoftheuniversediscoveredbydistant typeIasupernova(SNeIa)observations(Perlmutteretal. 1998,1999;Riess etal. 1998,2001), and to offset the deficiencyof a flat universe,favouredby the measurementsof the anisotropy of CMB (de Bernardis et al. 2000; Balbi et al. 2000, Durrer et al. 2003; Bennett et al. 2003; Spergel et al. 2003), but with a subcritical matter density parameter Ω ∼ 0.3, obtained from m Sendoffprintrequeststo:Zong-HongZhu 2 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas dynamicalestimates or X-ray and gravitationallensing observationsof clustersof galaxies(for arecentsummary,seeTurner2002).Whileacosmologicalconstantwith p = −ρ isthesim- Λ Λ plest candidate for DE, it suffers from the difficulties in understanding of the observed value intheframeworkofmodernquantumfieldtheory(Weinberg1989;Carrolletal.1992)andthe “coincidenceproblem”,theissueofexplainingtheinitialconditionsnecessarytoyieldthenear- coincidenceof the densities of matter and the cosmologicalconstant componenttoday. In this case,quintessence(adynamicalformofDEwithgenerallynegativepressure)hasbeeninvoked (Ratra and Peebles 1988; Wetterich 1988; Caldwell, Dave and Steinhardt 1998; Zlatev, Wang and Steinhardt1998).One of the importantcharacteristicsof quintessencemodelsis that their equation of state, ω ≡ p /ρ , vary with cosmic time whilst a cosmological constant remains x x x a constant ω = −1. Determination of values of ω and its possible cosmic evolution plays a Λ x central role to distinguish various DE models. Such a challenging has triggered off a wave of interestaimingtoconstrainω usingvariouscosmologicaldatabases,suchasSNeIa(Garnavich x etal.1998;Tonryetal.2003;Barrisetal.2003;Knopetal.2003;ZhuandFujimoto2003);old high redshift objects (Lima and Alcaniz 2000a); angular size of compact radio sources (Lima andAlcaniz2002);gravitationallensing(Chaeetal.2002;Sereno2002;Dev,JainandMahajan 2003; Huterer and Ma 2003); SNeIa plus Large Scale Structure (LSS) (Perlmutter, Turner & White1999);SNeIaplusgravitationallensing(Wagaandmiceli1999);SNeIaplusX-raygalaxy clusters(Schueckeretal.2003);CMBplusSNeIa(Efstathiou1999;BeanandMelchiorri2002; Hannestad and Mo¨rtsell 2002; Melchiorri et al. 2003); CMB plus stellar ages (Jimenez et al. 2003);and combinationsof various databases (Kujat et al. 2002).Other potential methodsfor the determination of ω have also widely discussed in literatures, such as the proposed SNAP x satellite1 (HutererandTurner1999;WellerandAlbrecht2001;WellerandAlbrecht2002);ad- vanced gravitationalwave detectors (Zhu, Fujimoto and Tatsumi 2001; Biesiada 2001); future SZ galaxy cluster surveys(Haiman,Mohr and Holder2001);and gammaray bursts (Choubey andKing2003;Takahashietal.2003). In this work, we shall consider the observational constraints on the DE equation of state parameterizedbyaredshiftindependentpressure-to-densityratioω arisingfromthelatestob- x servationsofangularsizeofhigh-zmilliarcsecondcompactradiosourcescompiledbyGurvits, Kellermann&Frey(1999)andtheX-raygasmassfractiondataofclustersofgalaxiespublished byAllenetal. (2002,2003).Thebasicsofa constantω assumptionare twofolds:ontheone x hand,theangulardiameterdistanceDAusedinthisworkisnotsensitivetovariationsofω with x redshiftbecauseitdependsonω throughmultipleintegrals(Maoretal.2001;Maoretal.2002; x Wasserman2002);ontheotherhand,forawideclassofquintessencemodels(particularly,those withtrackingsolutions),bothofΩ andω varyveryslowly(Zlatevetal.1999;Steinhardtetal. x x 1999;Efstathiou1999),andaneffectiveequationofstate,ω ∼ ω (z)Ω (z)dz/ Ω (z)dzisa eff x x x R R goodapproximationforanalysis(Wangetal.2000).Werelaxetheusualconstraintω ≥−1,be- x 1 SNAPhomepage,http://snap.lbl.gov Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 3 x gas causerecentyearstherehavebeenseveralmodelswhichpredictaDEcomponentwithω <−1 x (Parker and Raval 1999; Schulz and White 2001; Caldwell 2002;Maor et al. 2002; Frampton 2003) and also we hope to explore its effects on the ω determination. The confidence region x on the (ω , Ω ) plane obtained through a combined analysis of the two databases suggests x m −2.22 < ω < 0.62 at 95.4% confidence level, which goes to −1 ≤ ω < 0.60 when the x x constraintω ≥−1isimposed. x The planofthepaperisas follows.In thenextsection,we providethe boundsonω from x the angular size-redshift data. Constraints from the X-ray gas mass fraction of galaxy clusters arediscussedinsection3.Finally,wepresentacombinedanalysis,ourconcludingremarksand discussionin section4.Throughoutofthepaper,weassumea flatuniversewhichissuggested bythemeasurementsoftheanisotropyofCMBandfavouredbyinflationscenario. 2. Constraintsfromtheangularsize-redshiftdata WebeginbyevaluatingtheangulardiameterdistanceDAasafunctionofredshiftz.Theredshift dependentHubbleparametercanbewrittenasH(z)= H E(z),whereH =100hkms−1Mpc−1is 0 0 theHubbleconstantatthepresenttime.Foraflatuniversethatcontains(baryonicandcolddark) matteranddarkenergywithaconstantω (weignoretheradiationcomponentsintheuniverse x that are not important for the cosmological tests considered in this work), we get (Turner and White1997;Chibaetal.1997;Zhu1998) c 1 z dz′ DA(z;Ωm,ωx)= H01+zZ0 E(z′;Ωm,ωx) , E2(z;Ωm,ωx)=Ωm(1+z)3+(1−Ωm)(1+z)3(1+ωx).(1) Wefirstanalyzetheangularsize-redshitdataformilliarcsecondradiosourcesrecentlycom- piled by Gurvits, Kellermannand Frey (1999)to constrain ω . The basics of the angularsize- x redshittestinthecontextofdarkenergywasfirstdiscussedinatheoreticalviewpointbyLima and Alcaniz (2000b) without using any database. They also provide an analytical closed form whichdetermineshowtheredshiftz ,atwhichtheangularsizetakesitsminimalvalue,depends m on ω . Later on, using the same database compiled by Gurvits, Kellermann and Frey (1999), x LimaandAlcaniz(2002)obtainedΩ ∼ 0.2andω ∼ −1.. A distinguishingcharacteristicof m x ouranalysisisthattheusualconstraintsω ≥ −1isrelaxed.ThisdatabaseshowninFigure1is x 145sourcesdistributedintotwelveredshiftbinswithaboutthesamenumberofsourcesperbin. Thelowestandhighestredshiftbinsarecenteredatredshiftsz = 0.52andz = 3.6respectively. Wedeterminethemodelparametersω andΩ throughaχ2minimizationmethod.Therangeof x m ω spanstheinterval[-3,0]instepsof0.01,whiletherangeofΩ spanstheinterval[0,1]also x m instepsof0.01. [θ(z;l;Ω ,ω )−θ ]2 χ2(l;Ω ,ω )= i m x oi , (2) m x σ2 Xi i whereθ(z;Ω ,ω ) = l/DA istheanglesubtendedbyanobjectofproperlengthltransverseto i m x thelineofsightandθ istheobservedvaluesoftheangularsizewitherrorsσ oftheithbinin oi i thesample.Thesummationisoverall12observationaldatapoints. 4 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas Fig.1. Diagram of angular size vs redshift data for 145 compact radio sources (binned into 12 bins) of Gurvits, Kellermann and Frey (1999). We assume the charateristic linear size l=22.64h−1pcfortheoreticalcurves.Thesolidcurvecorrespondstoourbestfitwithω =−1.19 x andΩ = 0.23,whilethedashedanddot-dashedcurvescorrespondtoaΛ-dominateduniverse m andthestandardcolddarkmatter(SCDM)modelrespectively. Aspointedoutbytheauthorsofpreviousanalysesonthisdatabase(Gurvits,Kellermannand Frey 1999;Vishwakarma 2001;Alcaniz 2002;Zhu and Fujimoto 2002;Jain, Dev and Alcaniz 2003;ChenandRatra2003),whenoneuse theangularsize datatoconstrainthecosmological parameters, the results will be strongly dependenton the characteristic length l. Therefore,in- stead of assuming a specific value for l, we have workedon the intervall = 15h−1−30h−1pc. In order to make the analysis independentof the choice of the characteristic length l, we also minimizeequation(2)forl,ω andΩ simultaneously,whichgivesl=22.64h−1pc,ω =−1.19 x m x andΩ = 0.23asthebestfit.Figure2displaysthe68.3%and95.4%confidencelevelcontours m inthe(Ω ,ω )planeusingthelowershadedandthelowerplusdarkershadedareasrespectively. m x Itisclearfromthefigurehatω ispoorlyconstrainedfromtheangularsize-redshiftdataalone, x which only gives ω < −0.32 at 95.4% confidence level. However, as we shall see in Sec.4, x when we combinethis test with the X-ray gas mass fraction test, we could get fairly stringent constraintsonbothω andΩ . x m 3. ConstraintsfromthegalaxyclustersX-raydata Clusters of galaxies are the largest virialized systems in the universe, and their masses can be estimated by X-ray and opticalobservations,as well as gravitationallensing measurements.A comparisonof the gasmass fraction, f = M /M , as inferred fromX-ray observationsof gas gas tot clustersofgalaxiestothecosmicbaryonfractioncanprovideadirectconstraintonthedensity Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 5 x gas Fig.2. Confidence region plot of the best fit to the database of the angular size-redshift data compiled by Gurvits, Keller and Frey (1999) – see the text for a detailed description of the method.The68%and95%confidencelevelsinthe (Ω , ω ) planeare shownin lowershaded m x andlower+darkershadedareasrespectively. parameteroftheuniverseΩ (Whiteet.al.1993).Moreover,assumingthegasmassfractionis m constantincosmictime,Sasaki(1996)showthatthe f dataofclustersofgalaxiesatdifferent gas redshiftsalsoprovideanefficientwaytoconstrainothercosmologicalparametersdecribingthe geometryoftheuniverse.Thisisbasedonthefactthatthemeasured f valuesforeachcluster gas ofgalaxiesdependontheassumedangulardiameterdistancestothesourcesas f ∝ [DA]3/2. gas Theture,underlyingcosmologyshouldbetheonewhichmakethesemeasured f valuestobe gas invariantwithredshift(Sasaki1996;Allenatal.2003). UsingtheChandraobservationaldata,Allenetal.(2002;2003)havegotthe f profilesfor gas the 10 relaxedclusters. Exceptfor Abell963,the f profilesof the other9 clustersappearto gas haveconvergedorbecloseto convergingwithacanonicalradiusr ,whichisdefinedasthe 2500 radiuswithinwhichthe meanmassdensityis 2500timesthecriticaldensityofthe universeat the redshiftofthe cluster (Allenet al. 2002,2003).Thegasmassfractionvaluesof these nine clustersatr (orattheoutermostradiistudiedforPKS0745-191andAbell478)wereshown 2500 in Figure 5 of Allen et al. (2003).We will use this database to constrain the equation of state of the dark energy component, ω . Our analysis of the present data is very similar to the one x performedbyLimaetal.(2003).However,inadditionaltoincludingnewdatafromAllenetal. (2003),wealsotakeintoaccountthebiasbetweenthebaryonfractionsingalaxyclustersandin theuniverseasawhole.FollowingAllenetal.(2002),wehavethemodelfunctionas fmod(z;ω ,Ω )= bΩb h DSACDM(zi) 3/2 (3) gas i x m 1+0.19h1/2 Ω 0.5DA(z;ω ,Ω ) m i x m (cid:0) (cid:1) 6 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas Fig.3. Confidence region plot of the best fit to the f of 9 clusters published by Allen et al. gas (2002,2003)– see the text for a detailed description of the method. The 68% and 95% confi- dence levels in the ω –Ω plane are shown in lower shaded and lower + darker shaded areas x m respectively. wherethebiasfactorb≃0.93(Bialeketal.2001;Allenetal.2003)isaparametermotivatedby gasdynamicalsimulations,whichsuggestthatthebaryonfractioninclustersisslightlydepressed withrespecttotheUniverseasawhole(CenandOstriker1994;Eke,NavarroandFrenk1998; Frenketal. 1999;Bialek etal. 2001).Theterm (h/0.5)3/2 representsthe changein theHubble parameterfromthedefautvalueofH =50kms−1Mpc−1andtheratioDA (z)/DA(z;ω ,Ω ) 0 SCDM i i x m accountsforthedeviationsofthemodelconsideringfromthedefaultstandardcolddarkmatter (SCDM)cosmology. Again,wedetermineω andΩ throughaχ2minimizationmethodwiththesameparameter x m ranges and steps as last section. We constrain Ω h2 = 0.0205± 0.0018, the bound from the m primodialnucleosynthesis(O’Mearaetal.2001),andh = 0.72±0.08,thefinalresultfromthe Hubble Key Project by Freedmanet al. (2001).The χ2 difference between the modelfunction andSCDMdataisthen(Allenetal.2003) 2 χ2(ωx,Ωm)= 9 hfgmasod(zi;ωxσ,2Ωm)− fgas,oii +"Ωbh02.−0001.80205#2+"h−0.008.72#2, (4) Xi=1 fgas,i where fmod(z;ω ,Ω )referstoequation(3), f isthemeasured f withthedefautSCDM gas i x m gas,oi gas cosmology,andσ isthesymmetricroot-mean-squareerrors(ireferstotheithdatapoint,with fgas,i totally9data).Thesummationisoveralloftheobservationaldatapoints. Figure 3 displaysthe 68.3%and 95.4%confidencelevelcontoursin the (ω , Ω ) plane of x m ouranalysisusingthelowershadedandthelowerplusdarkershadedareasrespectively.Thebest fithappansatω = −0.86andΩ = 0.30.Asshowninthefigure,althoughtheX-raygasmass x m Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 7 x gas Fig.4. Confidence region plot of the best fit from a combined analysis for the angular size- redshift data (Gurvits et al. 1999) and the X-ray gas mass fractions of 9 clusters (Allen et al. 2002, 2003). The 68% and 95.4% confidence levels in the ω –Ω plane are shown in lower x m shaded and lower + darker shaded areas respectively.The best fit happansat ω = −1.16 and x Ω =0.29. m fractiondataconstrainsthedensityparameterΩ verystringently,itstillpoorlylimitsthedark m energyequationofstateω .Thesituationcanbedramaticallyimprovedwhenthetwodatabases x are combinedto analysis, in particularly,a nontriviallower boundon ω will be obtained(see x below). 4. Combinedanalysis,conclusionanddiscussion Now we present our combined analysis of the constraints from the angular size-redshift data and the X-raygas mass fractionof galaxyclustersand summarize our results. In Figure 4, we display the 68.3% and 95.4% confidencelevel contoursin the (ω , Ω ) plane using the lower x m shadedandthelowerplusdarkershadedareasrespectively.Thebestfithappansatω = −1.16 x and Ω = 0.29. As it shown, fairly stringent bounds on both ω and Ω are obtained, with m x m −2.22 < ω < −0.62and 0.28 < Ω < 0.32at the 95.4%confidencelevel. The boundon ω x m x goesto−1≤ω <−0.60whentheconstraintω ≥−1isimposed. x x Althoughprecisedeterminationsofω anditspossibleevolutionwithcosmictimearecrucial x fordecipheringthemysteryofDE,currentlyω hasnotbeendeterminedquitewellevenwithan x assumptionofω beingconstant(HannestadandMo¨rtsell2002;Spergeletal.2003;Takahashi x etal.2003).Itisworthyofdeterminingω usingajointanalysis.Inthispaperwehaveshown x that stringent constraints on ω can be obtained from the combination analysis of the angular x size-redshift data and the X-ray mass fraction data of clusters, which is a complementary to 8 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas other joint analyses. At this point we compare our results with other recent determinations of ω from independentmethods. For the usual quintessence model (i.e., the constraintω ≥ −1 x x is imposed), Garnavich et al. (1998)found ω < −0.55 using the SNeIa data from the High-z x SupernovaSearchTeam,whileLimaandAlcaniz(2002)obtainedω <−0.50usingtheanugular x size-redshiftdata fromGurvits, Kellermanand Frey(1999)(95%confidencelevel). Ourresult of ω < −0.60 is a little bit more stringent than theirs. However Bean and Melchiorri (2002) x foundanevenbetterconstraint,ω <−0.85,byanalyzingSNeIadataandmeasurementsofLSS x andthepositionsoftheacousticpeaksintheCMBspectrum.Forthemoregeneraldarkenergy model including either normal XCDM, as well as the extended or phantom energy (i.e., the constraintω ≥−1isrelaxed),HannestadandMo¨rtsell(2002)combinedCMB,LSSandSNeIa x dataforanalyzingandobtained−2.68<ω <−0.78at95.4%confidencelevel,whoselowerand x upperboundsarea little bitlowerthanours(−2.22 < ω < −0.62at95.4%confidencelevel). x Recently, Schuecker et al. (2003)combinedREFLEX X-ray clusters and SNeIa data to obtain −1.30 < ω < −0.65with 1σ statistical significance.From Figure 4, it is foundour 1σ result x is−1.72 < ω < −0.83,whichiscomparablewiththeresultsofSchueckeretal.(2003).Using x theX-raygasmassfractionof6galaxyclusters,Limaetal.(2003)found−2.08 < ω < −0.60 x (1σlevel),whichislessstringentthantheresultpresentedinthiswork.Thisisbecauseweused moreX-raygasmassfractiondataofgalaxyclustersandcombinedtheangularsize-redshiftdata of compactradio sources for analyzing. The analysis presented here reinforcesthe interest in precisemeasurementsofangularsizeofdistantcompactradiosourcesandstatisticalstudiesof the intrinsic length distribution of the sources. It is also hopefully that our constraints will be dramaticallyimprovedaftermoreacurateX-raydatafromChandraandXMM-Newtonbecome availablenearfuture. Acknowledgements. WewouldliketothankL.I.Gurvitsforsendingustheircompilationoftheangular size-redshift data and helpful explanation of the data, S. Allen for providing us the X-ray mass fraction dataandvarious helpabout dataanalysis, J. S.Alcanizand D.Tatsumi fortheir helpful discussion. Our thanksgototheanonymouserefereeforvaluablecommentsandusefulsuggestions,whichimprovedthis work very much. This work was supported by aGrant-in-Aid for ScientificResearch on PriorityAreas (No.14047219)fromtheMinistryofEducation,Culture,Sports,ScienceandTechnology. References Alcaniz,J.S.2002,Phys.Rev.D,65,123514 AllenS.W.,SchmidtR.W.,FabianA.C.,2002,MNRAS,334,L11 AllenS.W.,SchmidtR.W.,FabianA.C.,Ebeling,H.2003,MNRAS,342,287 Balbi,A.etal.2000,ApJ,545,L1 Barris,B.J.etal.2003,ApJ,accepted(astro-ph/0310843) Bean,R.andMelchiorri,A.2002,Phys.Rev.D,65,041302(R) Bennett,C.L.etal.2003ApJ,accepted(astro-ph/0302207) BialekJ.J.,EvrardA.E.,MohrJ.J.,2001,ApJ,555,597 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 9 x gas Biesiada,M.2001,MNRAS,325,1075 Caldwell,R.R.2002,Phys.Lett.B,545,23 Caldwell,R.,Dave,R.,andSteinhardt,P.J.1998,Phys.Rev.Lett.,80,1582 Carroll,S.,Press,W.H.andTurner,E.L.1992,ARA&A,30,499 CenR.,OstrikerJ.P.,1994,ApJ,429,4 Chae,K.-H.etal.2002,Phys.Rev.Lett.,89,151301 Chen,G.,andRatra,B.2003,ApJ,582,586 Chiba,T.,Sugiyama,N.andNakamura,T.1997,MNRAS,289,L5 Choubey,S.andKing,S.F.2003,Phys.Rev.D,67,073005 deBernardis,P.etal.2000,Nature,404,955 Dev,A.,Jain,D.andMahajan,S.2003,astro-ph/0307441 Durrer,R.,Novosyadlyj,B.andApunevych,S.2003,ApJ,583,33 EfstathiouG.1999,MNRAS,310,842 EkeV.R.,NavarroJ.F.,FrenkC.S.,1998,ApJ,503,569 Frampton,P.H.2003,Phys.Lett.B,555,139 FreedmanW.etal.,2001,ApJ,553,47 FrenkC.S.etal.,1999,ApJ,525,554 GarnavichP.M.etal.1998,ApJ,509,74 Gurvits,L.I.,Kellerman,K.I.andFrey,S.1999,A&A,342,378 Haiman,Z.Mohr,J.J.,andHolder,G.P.2001,ApJ,553,545 Hannestad,S.andMo¨rtsell,E.Phys.Rev.D,66,063508 Huterer,D.andMa,C.-P.2003,ApJ,submitted(astro-ph/0307301) Huterer,D.andTurner,M.S.1999,Phys.Rev.D,60,081301 Jain,D.,Dev,A.andAlcaniz,J.S.2003,Class.Quan.Grav.20,4163 Jimenez,J.,Verde,L.,Treu,T.,Stern,D.2003,ApJ,submitted(astro-ph/0302560) Knop,R.A.etal.2003,ApJ,accepted(astro-ph/0309368) Kujat,J.,Linn,A.M.,Scherrer,R.J.,Weinberg,D.H.2002,ApJ,572,1 LimaJ.A.S.&AlcanizJ.S.2000a,MNRAS,317,893 LimaJ.A.S.&AlcanizJ.S.2000b,A&A,357,393 LimaJ.A.S.&AlcanizJ.S.2002,ApJ,566,15 Lima,J.A.S.,Cunha,J.V.andAlcaniz,J.S.2003,Phys.Rev.D,68,023510 Maor,I.Brustein,R.,McMahon,J.andSteinhardt,P.J.2002,Phys.Rev.D,65,123003 Maor,I.Brustein,R.andSteinhardt,P.J.2001,Phys.Rev.Lett.,86,6 Melchiorri,A.,Mersini,L.O¨dman,C.J.Trodden,M.2003,Phys.Rev.D,68,043509 O’MearaJ.M.,TytlerD.,KirkmanD.,SuzukiN.,ProchaskaJ.X.,LubinD.,WolfeA.M.,2001,ApJ,552, 718 Parker,L.andRaval,A.1999,Phys.Rev.D,60,063512 Perlmutter,S.etal.1998,Nature,391,51 Perlmutter,S.etal.1999,ApJ,517,565 PerlmutterS.,TurnerM.S.&WhiteM.1999,Phys.Rev.Lett.,83,670 Ratra,B.andP.J.E.Peebles,P.J.E.1988,Phys.Rev.D,37,3406 Riess,A.G.etal.1998,AJ,116,1009 Riess,A.G.etal.2001,ApJ,560,49 10 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas Sasaki,S.1996,PASJ,48,L119 Schuecker,P.,Caldwell,R.R.,Bhringer,H.,Collins,C.A.,Guzzo,L.,Weinberg,N.N.2003,A&A,402, 53 Schulz,A.E.andWhite,M.J.2002,Phys.Rev.D,64,043514 Sereno,M.2002,A&A,393,757 Spergel,D.N.etal.2003ApJ,accepted(astro-ph/0302209) Steinhardt,P.J.Wang,L.andZlatev,I.1999,Phys.Rev.D,59,123504 Takahashi,K.,Oguri,M.,Kotake,K.,Ohno,H.2003,astro-ph/0305260 Tonry,J.L.etal.2003,ApJ,accepted(astro-ph/0305008) Turner,M.S.2002,ApJ,576,L101 Turner,M.S.andWhite,M.1997,Phys.Rev.D,56,R4439 Vishwakarma,R.G.2001,Class.Quan.Grav.18,1159 WagaI.&MiceliA.P.M.R.1999,Phys.Rev.D,59,103507 Wang,L.Caldwell,R.R.Ostriker,J.P.,Steinhardt,P.J.2000,ApJ,530,17 Wasserman,I.2002,Phys.Rev.D,66,123511 Weinberg,S.1989,Rev.Mod.Phys.61,1 Weller,J.andAlbrecht,A.2001,Phys.Rev.Lett.,86,1939 Weller,J.andAlbrecht,A.2002,Phys.Rev.D,65,103512 Wetterich,C.1988,Nucl.Phys.B302,645 WhiteS.D.M.,NavarroJ.F.,EvrardA.E.,FrenkC.S.,1993,Nature,366,429 Zhu,Z.-H.1998A&A,338,777 Zhu,Z.-H.andFujimoto,M.-K.2002,ApJ,581,1 Zhu,Z.-H.andFujimoto,M.-K.2003,ApJ,585,52 Zhu,Z.-H.,Fujimoto,M.-K.andTatsumi,D.2001,A&A,372,377 Zlatev,I.,Wang,L.andSteinhardt,P.J.1999,Phys.Rev.Lett.,82,896