ebook img

Determining the equation of state of dark energy from angular size of compact radio sources and X-ray gas mass fraction of galaxy clusters PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Determining the equation of state of dark energy from angular size of compact radio sources and X-ray gas mass fraction of galaxy clusters

Astronomy&Astrophysicsmanuscriptno.ms˙AA0327 February2,2008 (DOI:willbeinsertedbyhandlater) Determining the equation of state of dark energy from angular size of compact radio sources and X-ray gas mass fraction of galaxy clusters 4 0 Zong-HongZhu1,Masa-KatsuFujimoto1,andXiang-TaoHe2 0 2 n 1 NationalAstronomicalObservatory,2-21-1,Osawa,Mitaka,Tokyo181-8588,Japan a J e-mail:[email protected] [email protected] 8 2 DepartmentofAstronomy,BeijingNormalUniversity,Beijing100875,China 1 e-mail:[email protected] v 5 Received0000,0000;accepted0000,0000 9 0 1 Abstract. Usingrecent measurements of angular sizeof high-z milliarcsecond compact 0 4 radiosourcescompiledbyGurvits,Kellermann&Frey(1999)andX-raygasmassfraction 0 / of galaxy clusterspublished by Allen et al. (2002,2003), we explore their bounds on the h p equationofstate,ωx ≡ px/ρx,ofthedarkenergy,whoseexistencehasbeencongruously - o suggestedbyvariouscosmologicalobservations.Werelaxetheusualconstraintωx ≥ −1, r t andfindthatcombiningthetwodatabasesyieldsanontriviallowerboundonωx.Underthe s a assumptionofaflatuniverse,weobtainabound−2.22<ω <−0.62at95.4%confidence x : v level.The95.4%confidenceboundgoesto−1≤ω <−0.60whentheconstraintω ≥−1 i x x X isimposed. r a Key words. cosmological parameters — cosmology: theory — distance scale — radio galaxies:general—X-ray:galaxies:clusters 1. Introduction One of the most remarkablecosmologicalfindingsof recent years is, in additionalto the cold dark matter (CDM), the existence of a componentof dark energy(DE) with negativepressure inouruniverse.Itismotivatedtoexplaintheaccelerationoftheuniversediscoveredbydistant typeIasupernova(SNeIa)observations(Perlmutteretal. 1998,1999;Riess etal. 1998,2001), and to offset the deficiencyof a flat universe,favouredby the measurementsof the anisotropy of CMB (de Bernardis et al. 2000; Balbi et al. 2000, Durrer et al. 2003; Bennett et al. 2003; Spergel et al. 2003), but with a subcritical matter density parameter Ω ∼ 0.3, obtained from m Sendoffprintrequeststo:Zong-HongZhu 2 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas dynamicalestimates or X-ray and gravitationallensing observationsof clustersof galaxies(for arecentsummary,seeTurner2002).Whileacosmologicalconstantwith p = −ρ isthesim- Λ Λ plest candidate for DE, it suffers from the difficulties in understanding of the observed value intheframeworkofmodernquantumfieldtheory(Weinberg1989;Carrolletal.1992)andthe “coincidenceproblem”,theissueofexplainingtheinitialconditionsnecessarytoyieldthenear- coincidenceof the densities of matter and the cosmologicalconstant componenttoday. In this case,quintessence(adynamicalformofDEwithgenerallynegativepressure)hasbeeninvoked (Ratra and Peebles 1988; Wetterich 1988; Caldwell, Dave and Steinhardt 1998; Zlatev, Wang and Steinhardt1998).One of the importantcharacteristicsof quintessencemodelsis that their equation of state, ω ≡ p /ρ , vary with cosmic time whilst a cosmological constant remains x x x a constant ω = −1. Determination of values of ω and its possible cosmic evolution plays a Λ x central role to distinguish various DE models. Such a challenging has triggered off a wave of interestaimingtoconstrainω usingvariouscosmologicaldatabases,suchasSNeIa(Garnavich x etal.1998;Tonryetal.2003;Barrisetal.2003;Knopetal.2003;ZhuandFujimoto2003);old high redshift objects (Lima and Alcaniz 2000a); angular size of compact radio sources (Lima andAlcaniz2002);gravitationallensing(Chaeetal.2002;Sereno2002;Dev,JainandMahajan 2003; Huterer and Ma 2003); SNeIa plus Large Scale Structure (LSS) (Perlmutter, Turner & White1999);SNeIaplusgravitationallensing(Wagaandmiceli1999);SNeIaplusX-raygalaxy clusters(Schueckeretal.2003);CMBplusSNeIa(Efstathiou1999;BeanandMelchiorri2002; Hannestad and Mo¨rtsell 2002; Melchiorri et al. 2003); CMB plus stellar ages (Jimenez et al. 2003);and combinationsof various databases (Kujat et al. 2002).Other potential methodsfor the determination of ω have also widely discussed in literatures, such as the proposed SNAP x satellite1 (HutererandTurner1999;WellerandAlbrecht2001;WellerandAlbrecht2002);ad- vanced gravitationalwave detectors (Zhu, Fujimoto and Tatsumi 2001; Biesiada 2001); future SZ galaxy cluster surveys(Haiman,Mohr and Holder2001);and gammaray bursts (Choubey andKing2003;Takahashietal.2003). In this work, we shall consider the observational constraints on the DE equation of state parameterizedbyaredshiftindependentpressure-to-densityratioω arisingfromthelatestob- x servationsofangularsizeofhigh-zmilliarcsecondcompactradiosourcescompiledbyGurvits, Kellermann&Frey(1999)andtheX-raygasmassfractiondataofclustersofgalaxiespublished byAllenetal. (2002,2003).Thebasicsofa constantω assumptionare twofolds:ontheone x hand,theangulardiameterdistanceDAusedinthisworkisnotsensitivetovariationsofω with x redshiftbecauseitdependsonω throughmultipleintegrals(Maoretal.2001;Maoretal.2002; x Wasserman2002);ontheotherhand,forawideclassofquintessencemodels(particularly,those withtrackingsolutions),bothofΩ andω varyveryslowly(Zlatevetal.1999;Steinhardtetal. x x 1999;Efstathiou1999),andaneffectiveequationofstate,ω ∼ ω (z)Ω (z)dz/ Ω (z)dzisa eff x x x R R goodapproximationforanalysis(Wangetal.2000).Werelaxetheusualconstraintω ≥−1,be- x 1 SNAPhomepage,http://snap.lbl.gov Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 3 x gas causerecentyearstherehavebeenseveralmodelswhichpredictaDEcomponentwithω <−1 x (Parker and Raval 1999; Schulz and White 2001; Caldwell 2002;Maor et al. 2002; Frampton 2003) and also we hope to explore its effects on the ω determination. The confidence region x on the (ω , Ω ) plane obtained through a combined analysis of the two databases suggests x m −2.22 < ω < 0.62 at 95.4% confidence level, which goes to −1 ≤ ω < 0.60 when the x x constraintω ≥−1isimposed. x The planofthepaperisas follows.In thenextsection,we providethe boundsonω from x the angular size-redshift data. Constraints from the X-ray gas mass fraction of galaxy clusters arediscussedinsection3.Finally,wepresentacombinedanalysis,ourconcludingremarksand discussionin section4.Throughoutofthepaper,weassumea flatuniversewhichissuggested bythemeasurementsoftheanisotropyofCMBandfavouredbyinflationscenario. 2. Constraintsfromtheangularsize-redshiftdata WebeginbyevaluatingtheangulardiameterdistanceDAasafunctionofredshiftz.Theredshift dependentHubbleparametercanbewrittenasH(z)= H E(z),whereH =100hkms−1Mpc−1is 0 0 theHubbleconstantatthepresenttime.Foraflatuniversethatcontains(baryonicandcolddark) matteranddarkenergywithaconstantω (weignoretheradiationcomponentsintheuniverse x that are not important for the cosmological tests considered in this work), we get (Turner and White1997;Chibaetal.1997;Zhu1998) c 1 z dz′ DA(z;Ωm,ωx)= H01+zZ0 E(z′;Ωm,ωx) , E2(z;Ωm,ωx)=Ωm(1+z)3+(1−Ωm)(1+z)3(1+ωx).(1) Wefirstanalyzetheangularsize-redshitdataformilliarcsecondradiosourcesrecentlycom- piled by Gurvits, Kellermannand Frey (1999)to constrain ω . The basics of the angularsize- x redshittestinthecontextofdarkenergywasfirstdiscussedinatheoreticalviewpointbyLima and Alcaniz (2000b) without using any database. They also provide an analytical closed form whichdetermineshowtheredshiftz ,atwhichtheangularsizetakesitsminimalvalue,depends m on ω . Later on, using the same database compiled by Gurvits, Kellermann and Frey (1999), x LimaandAlcaniz(2002)obtainedΩ ∼ 0.2andω ∼ −1.. A distinguishingcharacteristicof m x ouranalysisisthattheusualconstraintsω ≥ −1isrelaxed.ThisdatabaseshowninFigure1is x 145sourcesdistributedintotwelveredshiftbinswithaboutthesamenumberofsourcesperbin. Thelowestandhighestredshiftbinsarecenteredatredshiftsz = 0.52andz = 3.6respectively. Wedeterminethemodelparametersω andΩ throughaχ2minimizationmethod.Therangeof x m ω spanstheinterval[-3,0]instepsof0.01,whiletherangeofΩ spanstheinterval[0,1]also x m instepsof0.01. [θ(z;l;Ω ,ω )−θ ]2 χ2(l;Ω ,ω )= i m x oi , (2) m x σ2 Xi i whereθ(z;Ω ,ω ) = l/DA istheanglesubtendedbyanobjectofproperlengthltransverseto i m x thelineofsightandθ istheobservedvaluesoftheangularsizewitherrorsσ oftheithbinin oi i thesample.Thesummationisoverall12observationaldatapoints. 4 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas Fig.1. Diagram of angular size vs redshift data for 145 compact radio sources (binned into 12 bins) of Gurvits, Kellermann and Frey (1999). We assume the charateristic linear size l=22.64h−1pcfortheoreticalcurves.Thesolidcurvecorrespondstoourbestfitwithω =−1.19 x andΩ = 0.23,whilethedashedanddot-dashedcurvescorrespondtoaΛ-dominateduniverse m andthestandardcolddarkmatter(SCDM)modelrespectively. Aspointedoutbytheauthorsofpreviousanalysesonthisdatabase(Gurvits,Kellermannand Frey 1999;Vishwakarma 2001;Alcaniz 2002;Zhu and Fujimoto 2002;Jain, Dev and Alcaniz 2003;ChenandRatra2003),whenoneuse theangularsize datatoconstrainthecosmological parameters, the results will be strongly dependenton the characteristic length l. Therefore,in- stead of assuming a specific value for l, we have workedon the intervall = 15h−1−30h−1pc. In order to make the analysis independentof the choice of the characteristic length l, we also minimizeequation(2)forl,ω andΩ simultaneously,whichgivesl=22.64h−1pc,ω =−1.19 x m x andΩ = 0.23asthebestfit.Figure2displaysthe68.3%and95.4%confidencelevelcontours m inthe(Ω ,ω )planeusingthelowershadedandthelowerplusdarkershadedareasrespectively. m x Itisclearfromthefigurehatω ispoorlyconstrainedfromtheangularsize-redshiftdataalone, x which only gives ω < −0.32 at 95.4% confidence level. However, as we shall see in Sec.4, x when we combinethis test with the X-ray gas mass fraction test, we could get fairly stringent constraintsonbothω andΩ . x m 3. ConstraintsfromthegalaxyclustersX-raydata Clusters of galaxies are the largest virialized systems in the universe, and their masses can be estimated by X-ray and opticalobservations,as well as gravitationallensing measurements.A comparisonof the gasmass fraction, f = M /M , as inferred fromX-ray observationsof gas gas tot clustersofgalaxiestothecosmicbaryonfractioncanprovideadirectconstraintonthedensity Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 5 x gas Fig.2. Confidence region plot of the best fit to the database of the angular size-redshift data compiled by Gurvits, Keller and Frey (1999) – see the text for a detailed description of the method.The68%and95%confidencelevelsinthe (Ω , ω ) planeare shownin lowershaded m x andlower+darkershadedareasrespectively. parameteroftheuniverseΩ (Whiteet.al.1993).Moreover,assumingthegasmassfractionis m constantincosmictime,Sasaki(1996)showthatthe f dataofclustersofgalaxiesatdifferent gas redshiftsalsoprovideanefficientwaytoconstrainothercosmologicalparametersdecribingthe geometryoftheuniverse.Thisisbasedonthefactthatthemeasured f valuesforeachcluster gas ofgalaxiesdependontheassumedangulardiameterdistancestothesourcesas f ∝ [DA]3/2. gas Theture,underlyingcosmologyshouldbetheonewhichmakethesemeasured f valuestobe gas invariantwithredshift(Sasaki1996;Allenatal.2003). UsingtheChandraobservationaldata,Allenetal.(2002;2003)havegotthe f profilesfor gas the 10 relaxedclusters. Exceptfor Abell963,the f profilesof the other9 clustersappearto gas haveconvergedorbecloseto convergingwithacanonicalradiusr ,whichisdefinedasthe 2500 radiuswithinwhichthe meanmassdensityis 2500timesthecriticaldensityofthe universeat the redshiftofthe cluster (Allenet al. 2002,2003).Thegasmassfractionvaluesof these nine clustersatr (orattheoutermostradiistudiedforPKS0745-191andAbell478)wereshown 2500 in Figure 5 of Allen et al. (2003).We will use this database to constrain the equation of state of the dark energy component, ω . Our analysis of the present data is very similar to the one x performedbyLimaetal.(2003).However,inadditionaltoincludingnewdatafromAllenetal. (2003),wealsotakeintoaccountthebiasbetweenthebaryonfractionsingalaxyclustersandin theuniverseasawhole.FollowingAllenetal.(2002),wehavethemodelfunctionas fmod(z;ω ,Ω )= bΩb h DSACDM(zi) 3/2 (3) gas i x m 1+0.19h1/2 Ω 0.5DA(z;ω ,Ω ) m i x m (cid:0) (cid:1)   6 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas Fig.3. Confidence region plot of the best fit to the f of 9 clusters published by Allen et al. gas (2002,2003)– see the text for a detailed description of the method. The 68% and 95% confi- dence levels in the ω –Ω plane are shown in lower shaded and lower + darker shaded areas x m respectively. wherethebiasfactorb≃0.93(Bialeketal.2001;Allenetal.2003)isaparametermotivatedby gasdynamicalsimulations,whichsuggestthatthebaryonfractioninclustersisslightlydepressed withrespecttotheUniverseasawhole(CenandOstriker1994;Eke,NavarroandFrenk1998; Frenketal. 1999;Bialek etal. 2001).Theterm (h/0.5)3/2 representsthe changein theHubble parameterfromthedefautvalueofH =50kms−1Mpc−1andtheratioDA (z)/DA(z;ω ,Ω ) 0 SCDM i i x m accountsforthedeviationsofthemodelconsideringfromthedefaultstandardcolddarkmatter (SCDM)cosmology. Again,wedetermineω andΩ throughaχ2minimizationmethodwiththesameparameter x m ranges and steps as last section. We constrain Ω h2 = 0.0205± 0.0018, the bound from the m primodialnucleosynthesis(O’Mearaetal.2001),andh = 0.72±0.08,thefinalresultfromthe Hubble Key Project by Freedmanet al. (2001).The χ2 difference between the modelfunction andSCDMdataisthen(Allenetal.2003) 2 χ2(ωx,Ωm)= 9 hfgmasod(zi;ωxσ,2Ωm)− fgas,oii +"Ωbh02.−0001.80205#2+"h−0.008.72#2, (4) Xi=1 fgas,i where fmod(z;ω ,Ω )referstoequation(3), f isthemeasured f withthedefautSCDM gas i x m gas,oi gas cosmology,andσ isthesymmetricroot-mean-squareerrors(ireferstotheithdatapoint,with fgas,i totally9data).Thesummationisoveralloftheobservationaldatapoints. Figure 3 displaysthe 68.3%and 95.4%confidencelevelcontoursin the (ω , Ω ) plane of x m ouranalysisusingthelowershadedandthelowerplusdarkershadedareasrespectively.Thebest fithappansatω = −0.86andΩ = 0.30.Asshowninthefigure,althoughtheX-raygasmass x m Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 7 x gas Fig.4. Confidence region plot of the best fit from a combined analysis for the angular size- redshift data (Gurvits et al. 1999) and the X-ray gas mass fractions of 9 clusters (Allen et al. 2002, 2003). The 68% and 95.4% confidence levels in the ω –Ω plane are shown in lower x m shaded and lower + darker shaded areas respectively.The best fit happansat ω = −1.16 and x Ω =0.29. m fractiondataconstrainsthedensityparameterΩ verystringently,itstillpoorlylimitsthedark m energyequationofstateω .Thesituationcanbedramaticallyimprovedwhenthetwodatabases x are combinedto analysis, in particularly,a nontriviallower boundon ω will be obtained(see x below). 4. Combinedanalysis,conclusionanddiscussion Now we present our combined analysis of the constraints from the angular size-redshift data and the X-raygas mass fractionof galaxyclustersand summarize our results. In Figure 4, we display the 68.3% and 95.4% confidencelevel contoursin the (ω , Ω ) plane using the lower x m shadedandthelowerplusdarkershadedareasrespectively.Thebestfithappansatω = −1.16 x and Ω = 0.29. As it shown, fairly stringent bounds on both ω and Ω are obtained, with m x m −2.22 < ω < −0.62and 0.28 < Ω < 0.32at the 95.4%confidencelevel. The boundon ω x m x goesto−1≤ω <−0.60whentheconstraintω ≥−1isimposed. x x Althoughprecisedeterminationsofω anditspossibleevolutionwithcosmictimearecrucial x fordecipheringthemysteryofDE,currentlyω hasnotbeendeterminedquitewellevenwithan x assumptionofω beingconstant(HannestadandMo¨rtsell2002;Spergeletal.2003;Takahashi x etal.2003).Itisworthyofdeterminingω usingajointanalysis.Inthispaperwehaveshown x that stringent constraints on ω can be obtained from the combination analysis of the angular x size-redshift data and the X-ray mass fraction data of clusters, which is a complementary to 8 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas other joint analyses. At this point we compare our results with other recent determinations of ω from independentmethods. For the usual quintessence model (i.e., the constraintω ≥ −1 x x is imposed), Garnavich et al. (1998)found ω < −0.55 using the SNeIa data from the High-z x SupernovaSearchTeam,whileLimaandAlcaniz(2002)obtainedω <−0.50usingtheanugular x size-redshiftdata fromGurvits, Kellermanand Frey(1999)(95%confidencelevel). Ourresult of ω < −0.60 is a little bit more stringent than theirs. However Bean and Melchiorri (2002) x foundanevenbetterconstraint,ω <−0.85,byanalyzingSNeIadataandmeasurementsofLSS x andthepositionsoftheacousticpeaksintheCMBspectrum.Forthemoregeneraldarkenergy model including either normal XCDM, as well as the extended or phantom energy (i.e., the constraintω ≥−1isrelaxed),HannestadandMo¨rtsell(2002)combinedCMB,LSSandSNeIa x dataforanalyzingandobtained−2.68<ω <−0.78at95.4%confidencelevel,whoselowerand x upperboundsarea little bitlowerthanours(−2.22 < ω < −0.62at95.4%confidencelevel). x Recently, Schuecker et al. (2003)combinedREFLEX X-ray clusters and SNeIa data to obtain −1.30 < ω < −0.65with 1σ statistical significance.From Figure 4, it is foundour 1σ result x is−1.72 < ω < −0.83,whichiscomparablewiththeresultsofSchueckeretal.(2003).Using x theX-raygasmassfractionof6galaxyclusters,Limaetal.(2003)found−2.08 < ω < −0.60 x (1σlevel),whichislessstringentthantheresultpresentedinthiswork.Thisisbecauseweused moreX-raygasmassfractiondataofgalaxyclustersandcombinedtheangularsize-redshiftdata of compactradio sources for analyzing. The analysis presented here reinforcesthe interest in precisemeasurementsofangularsizeofdistantcompactradiosourcesandstatisticalstudiesof the intrinsic length distribution of the sources. It is also hopefully that our constraints will be dramaticallyimprovedaftermoreacurateX-raydatafromChandraandXMM-Newtonbecome availablenearfuture. Acknowledgements. WewouldliketothankL.I.Gurvitsforsendingustheircompilationoftheangular size-redshift data and helpful explanation of the data, S. Allen for providing us the X-ray mass fraction dataandvarious helpabout dataanalysis, J. S.Alcanizand D.Tatsumi fortheir helpful discussion. Our thanksgototheanonymouserefereeforvaluablecommentsandusefulsuggestions,whichimprovedthis work very much. This work was supported by aGrant-in-Aid for ScientificResearch on PriorityAreas (No.14047219)fromtheMinistryofEducation,Culture,Sports,ScienceandTechnology. References Alcaniz,J.S.2002,Phys.Rev.D,65,123514 AllenS.W.,SchmidtR.W.,FabianA.C.,2002,MNRAS,334,L11 AllenS.W.,SchmidtR.W.,FabianA.C.,Ebeling,H.2003,MNRAS,342,287 Balbi,A.etal.2000,ApJ,545,L1 Barris,B.J.etal.2003,ApJ,accepted(astro-ph/0310843) Bean,R.andMelchiorri,A.2002,Phys.Rev.D,65,041302(R) Bennett,C.L.etal.2003ApJ,accepted(astro-ph/0302207) BialekJ.J.,EvrardA.E.,MohrJ.J.,2001,ApJ,555,597 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data 9 x gas Biesiada,M.2001,MNRAS,325,1075 Caldwell,R.R.2002,Phys.Lett.B,545,23 Caldwell,R.,Dave,R.,andSteinhardt,P.J.1998,Phys.Rev.Lett.,80,1582 Carroll,S.,Press,W.H.andTurner,E.L.1992,ARA&A,30,499 CenR.,OstrikerJ.P.,1994,ApJ,429,4 Chae,K.-H.etal.2002,Phys.Rev.Lett.,89,151301 Chen,G.,andRatra,B.2003,ApJ,582,586 Chiba,T.,Sugiyama,N.andNakamura,T.1997,MNRAS,289,L5 Choubey,S.andKing,S.F.2003,Phys.Rev.D,67,073005 deBernardis,P.etal.2000,Nature,404,955 Dev,A.,Jain,D.andMahajan,S.2003,astro-ph/0307441 Durrer,R.,Novosyadlyj,B.andApunevych,S.2003,ApJ,583,33 EfstathiouG.1999,MNRAS,310,842 EkeV.R.,NavarroJ.F.,FrenkC.S.,1998,ApJ,503,569 Frampton,P.H.2003,Phys.Lett.B,555,139 FreedmanW.etal.,2001,ApJ,553,47 FrenkC.S.etal.,1999,ApJ,525,554 GarnavichP.M.etal.1998,ApJ,509,74 Gurvits,L.I.,Kellerman,K.I.andFrey,S.1999,A&A,342,378 Haiman,Z.Mohr,J.J.,andHolder,G.P.2001,ApJ,553,545 Hannestad,S.andMo¨rtsell,E.Phys.Rev.D,66,063508 Huterer,D.andMa,C.-P.2003,ApJ,submitted(astro-ph/0307301) Huterer,D.andTurner,M.S.1999,Phys.Rev.D,60,081301 Jain,D.,Dev,A.andAlcaniz,J.S.2003,Class.Quan.Grav.20,4163 Jimenez,J.,Verde,L.,Treu,T.,Stern,D.2003,ApJ,submitted(astro-ph/0302560) Knop,R.A.etal.2003,ApJ,accepted(astro-ph/0309368) Kujat,J.,Linn,A.M.,Scherrer,R.J.,Weinberg,D.H.2002,ApJ,572,1 LimaJ.A.S.&AlcanizJ.S.2000a,MNRAS,317,893 LimaJ.A.S.&AlcanizJ.S.2000b,A&A,357,393 LimaJ.A.S.&AlcanizJ.S.2002,ApJ,566,15 Lima,J.A.S.,Cunha,J.V.andAlcaniz,J.S.2003,Phys.Rev.D,68,023510 Maor,I.Brustein,R.,McMahon,J.andSteinhardt,P.J.2002,Phys.Rev.D,65,123003 Maor,I.Brustein,R.andSteinhardt,P.J.2001,Phys.Rev.Lett.,86,6 Melchiorri,A.,Mersini,L.O¨dman,C.J.Trodden,M.2003,Phys.Rev.D,68,043509 O’MearaJ.M.,TytlerD.,KirkmanD.,SuzukiN.,ProchaskaJ.X.,LubinD.,WolfeA.M.,2001,ApJ,552, 718 Parker,L.andRaval,A.1999,Phys.Rev.D,60,063512 Perlmutter,S.etal.1998,Nature,391,51 Perlmutter,S.etal.1999,ApJ,517,565 PerlmutterS.,TurnerM.S.&WhiteM.1999,Phys.Rev.Lett.,83,670 Ratra,B.andP.J.E.Peebles,P.J.E.1988,Phys.Rev.D,37,3406 Riess,A.G.etal.1998,AJ,116,1009 Riess,A.G.etal.2001,ApJ,560,49 10 Zhu,Z.-H.,Fujimoto,M.-K.&He,X.-T.:Determiningω fromΘ-zand f data x gas Sasaki,S.1996,PASJ,48,L119 Schuecker,P.,Caldwell,R.R.,Bhringer,H.,Collins,C.A.,Guzzo,L.,Weinberg,N.N.2003,A&A,402, 53 Schulz,A.E.andWhite,M.J.2002,Phys.Rev.D,64,043514 Sereno,M.2002,A&A,393,757 Spergel,D.N.etal.2003ApJ,accepted(astro-ph/0302209) Steinhardt,P.J.Wang,L.andZlatev,I.1999,Phys.Rev.D,59,123504 Takahashi,K.,Oguri,M.,Kotake,K.,Ohno,H.2003,astro-ph/0305260 Tonry,J.L.etal.2003,ApJ,accepted(astro-ph/0305008) Turner,M.S.2002,ApJ,576,L101 Turner,M.S.andWhite,M.1997,Phys.Rev.D,56,R4439 Vishwakarma,R.G.2001,Class.Quan.Grav.18,1159 WagaI.&MiceliA.P.M.R.1999,Phys.Rev.D,59,103507 Wang,L.Caldwell,R.R.Ostriker,J.P.,Steinhardt,P.J.2000,ApJ,530,17 Wasserman,I.2002,Phys.Rev.D,66,123511 Weinberg,S.1989,Rev.Mod.Phys.61,1 Weller,J.andAlbrecht,A.2001,Phys.Rev.Lett.,86,1939 Weller,J.andAlbrecht,A.2002,Phys.Rev.D,65,103512 Wetterich,C.1988,Nucl.Phys.B302,645 WhiteS.D.M.,NavarroJ.F.,EvrardA.E.,FrenkC.S.,1993,Nature,366,429 Zhu,Z.-H.1998A&A,338,777 Zhu,Z.-H.andFujimoto,M.-K.2002,ApJ,581,1 Zhu,Z.-H.andFujimoto,M.-K.2003,ApJ,585,52 Zhu,Z.-H.,Fujimoto,M.-K.andTatsumi,D.2001,A&A,372,377 Zlatev,I.,Wang,L.andSteinhardt,P.J.1999,Phys.Rev.Lett.,82,896

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.