UNIVERSITY OF NOVA GORICA GRADUATE SCHOOL DETERMINATION OF THE ACTUAL UPTAKE OF ESSENTIAL NUTRIENTS BY DIFFERENT PARTS OF Vitis vinifera L. cv. ‛REBULA’ DISSERTATION Kristina Brataševec Mentor: doc. dr. Branka Mozetič Vodopivec Nova Gorica, 2013 TABLE OF CONTENTS LIST OF TABLE .................................................................................................... VII LIST OF FIGURES ................................................................................................ XII LIST OF ANNEXES ............................................................................................. XIV ABBREVIATIONS AND SYMBOLS ................................................................. XVI 1 INTRODUCTION .................................................................................................. 1 1.1 THEORETICAL BACKGROUNDS ................................................................ 4 1.1.1 Essential elements and terminology ........................................................ 4 1.1.2 Plant nutrient sources ............................................................................... 6 1.1.3 Inputs and outputs of micro-elements from agro-ecosystems and their impact on the environment ............................................................................... 8 1.1.4 Nutrient uptake by plants ........................................................................ 9 1.1.4.1 Soil pH and redox potential ............................................................... 12 1.1.4.2 Interactions among elements ............................................................. 14 1.1.5 Plant nutrients and their functions ....................................................... 15 1.1.6 Grape quality parameters influenced by mineral nutrition ............... 19 1.1.6.1 Polyphenol compounds ...................................................................... 21 1.1.7 Physicochemical forms (species) in the soil .......................................... 23 1.1.8 Estimation of the ‘phytoavailable’ metals in the soil ........................... 25 1.2 RESEARCH GOALS ...................................................................................... 28 2 EXPERIMENTAL ................................................................................................ 31 2.1 POT EXPERIMENT ........................................................................................ 31 2.1.1 Site and climate ....................................................................................... 31 2.1.2 Plant material and growing conditions ................................................. 31 2.1.3 Treatment layout ..................................................................................... 33 2.2 INSTRUMENTS AND OTHER EQUIPMENTS ........................................... 35 2.3 REAGENTS, STANDARDS AND REFERENCE MATERIALS ................. 36 2.4 ANALYTICAL PROCEDURES ..................................................................... 38 2.4.1 Determination of K, Mg, Fe and Zn in leaf and grape samples ......... 38 2.4.1.1 Sampling and homogenisation ........................................................... 39 III 2.4.1.2 Mineralization (wet digestion) of plant material ............................... 39 2.4.2 Determination of other major elements in leaf blades ........................ 40 2.4.3 Grape quality analysis ............................................................................ 41 2.4.4 Sample preparation and processing prior to polyphenol analysis ..... 41 2.4.4.1 Total phenols determination .............................................................. 42 2.4.4.2 HPLC–DAD quantification of grape phenolic compounds ............... 43 2.4.5 Soil sampling and characterisation ....................................................... 44 2.4.5.1 Total K, Mg, Fe and Zn contents in soil samples .............................. 45 2.4.5.2 Extraction procedures – determination of plant available fraction .... 45 2.4.6 Determination of K, Mg, Fe, and Zn in leaf, grape, and soil samples by FAAS ............................................................................................................ 48 2.4.6.1 Method optimisation .......................................................................... 48 2.4.6.2 Quality control and quality assessment measures .............................. 49 2.4.7 Comparison of potted grapevines with the ones grown in the vineyards ........................................................................................................... 51 2.5 STATISTICAL ANALYSIS ........................................................................... 52 3 RESULTS AND DISCUSSION ........................................................................... 55 3.1 CONCENTRATION OF K, Mg, Fe, AND Zn IN PLANT TISSUE .............. 55 3.1.1 FAAS method optimisation .................................................................... 55 3.1.2 Quality control and quality assessment measures ............................... 57 3.1.2.1 Leaf analysis ...................................................................................... 57 3.1.2.2 Grape analysis .................................................................................... 58 3.1.2.3 Soil analysis - total element determination ........................................ 59 3.1.2.4 Soil analysis – determination of soil fractions ................................... 60 3.2 LEAVES AND GRAPES ANALYSIS ........................................................... 62 3.2.1 Comparison between blade and petiole analysis – preliminary analysis 2008 and 2009 ................................................................................................... 63 3.2.2 Mineral content in grapevine as affected by fertilization treatment and year ............................................................................................................ 66 3.2.3 Potassium - Effect of soil NPK fertilization on K content in leaves and grapes ................................................................................................................ 67 IV 3.2.4 Magnesium – effect of soil NPK and Mg fertilization on Mg content in leaves and grapes ............................................................................................. 68 3.2.5 Iron – effect of NPK and Fe fertilization on Fe content in leaves and grape .................................................................................................................. 71 3.2.6 Zn increasing as affected by NPK coupled with Mg and Fe fertilization ....................................................................................................... 72 3.2.7 Changes in K, Mg, Fe and Zn leaf concentration over time ............... 73 3.2.8 Correlations between elements in the petioles and grape berries ...... 76 3.2.9 Other macro- and micro-elements in grapevine leaves ....................... 77 3.2.10 PCA analysis .......................................................................................... 78 3.3 GRAPE QUALITY ANALYSIS ..................................................................... 80 3.3.1 Berry weight, sugar content, organic acids, and free amino nitrogen determination ................................................................................................... 80 3.3.2 Total phenols determination with Folin-Ciocalteu metod .................. 84 3.3.3 HPLC-DAD quantification of hydroxycinnamic acids........................ 85 3.3.3.1 Method optimisation for the quantification of grape phenolic compounds ..................................................................................................... 85 3.3.3.2 Hydroxycinnamic acids contents in grape juice ................................ 86 3.4 SOIL ANALYSIS ............................................................................................ 92 3.4.1 General characteristics of the pot soil ................................................... 92 3.4.1.1 Soil pH and redox potential ............................................................... 92 3.4.2 Total K, Mg, Fe, and Zn contents in the pot and vineyard soil .......... 93 3.4.3 Soil extractions ........................................................................................ 95 3.4.3.1 Extraction pH impact ......................................................................... 96 3.4.3.2 Extraction efficiency .......................................................................... 97 3.4.4 Estimation of plant available metal soil fraction ................................. 99 3.4.4.1 Correlations between metal contents of soil fractions and different parts of vines .................................................................................................. 99 3.4.4.2 Changing of nutrient plant availability over years ........................... 102 3.5 COMPARISON BETWEEN POTTED GRAPEVINES AND VINEYARD SAMPLES ........................................................................................................... 107 3.5.1 Soil analysis ........................................................................................... 108 3.5.2 K, Mg, Fe, and Zn contents in leaf petioles and grape berries ......... 109 V 3.5.3 Grape quality parameters .................................................................... 111 4 CONCLUSIONS ................................................................................................. 113 5 SUMMARY ......................................................................................................... 116 6 POVZETEK ........................................................................................................ 119 7 REFERENCES .................................................................................................... 121 ACKNOWLEDGEMENT ..................................................................................... 137 ANNEXES .............................................................................................................. 139 VI LIST OF TABLE Table 1: Elements those are essential for all higher plants (Bergman, 1992: 12). ..... 5 Table 2: Average concentrations of mineral nutrients in plant shoot that are sufficient for adequate growth (Marschner, 1995: 5). ................................................. 6 Table 3: Plant mobility of same essential nutrients, their absorption forms by plant roots and optimal soil pH values for the assimilation (Bavaresco et al. (2010); Fregoni, 1997: 518; Marschner, 1995). ..................................................................... 10 Table 4: Negative (-) and positive (+) interactions among N, K, P, Mg, Fe and Zn. 14 Table 5: Functions and deficiency symptoms of common macro- and micro-nutrients in grapevine (Bergmann, 1992; Mullins et al., 1992). ............................................... 16 Table 6: K, Mg, Fe, and Zn concentrations in blades and petioles for assessing the nutrient status of grapevines. ..................................................................................... 18 Table 7: The most used extractants to predict phytoavailability of metals. .............. 27 Table 8: Description of treatments applied in the pot experiment (2008-2011) with ‛Rebula’ grapevines. .................................................................................................. 34 Table 9: Sampling and phenology dates during the experiment. .............................. 39 Table 10: Leaf and grape sample preparation steps and mineralization procedure. 40 Table 11: Date and characteristics of soil sampling and analysis performed during the pot experiment in our laboratory and by YARA Italia S.p.a. (Milan, Italy). ....... 46 VII Table 12: Extractants used in our experiment with corresponding references in the literature to predict the phytoavailability of K, Mg, Fe, and Zn in ‘Rebula’ grapevines. ................................................................................................................. 47 Table 13: Description of four selected ‛Rebula’ vineyards located nearby the pot experiment. ................................................................................................................ 51 Table 14: Sampling and analysis performed in four selected vineyards. ................. 52 Table 15: Working conditions in FAAS for K, Mg, Fe, and Zn measurements. ...... 55 Table 16: Results for the sand-bath HNO /H O digestion using various plant SRMs. 3 2 2 ................................................................................................................................... 58 Table 17: Results for the sand-bath HNO /H O digestion using standard addition 3 2 2 method. ...................................................................................................................... 59 Table 18: Comparison of K, Mg, Fe, and Zn contents in berry samples with or without pedicels. ........................................................................................................ 59 Table 19: K, Mg, Fe and Zn results for the sand-bath HNO /H O /HClO /HF 3 2 2 4 digestion using three soil SRMs. ............................................................................... 60 Table 20: Certified and determined EDTA and CH COOH extractable 3 concentrations for Zn in BCR 483 certified reference material. ................................ 61 Table 21: EDTA-extracted Fe and Zn, and NH NO -extracted K and Mg as 4 3 compared with reference laboratory Yara Italia S.p.a. (Milan, Italy). ....................... 61 Table 22: Effects of fertilization treatments and season on K and Mg contents in petioles (sampled at berry set and at veraison) and whole grape berries. .................. 68 VIII Table 23: Effects of fertilization treatments and season on Fe and Zn contents in petioles (sampled at berry set and at veraison) and whole grape berries. .................. 69 Table 24: K, Mg, and Fe content (mean values; n = 3) in petioles at berry set and veraison of differently treated ‛Rebula’ grapevines in years 2009, 2010 and 2011. . 74 Table 25: Ratio K:Mg (mean values ± standard deviation; n = 3) in petioles at berry set and at veraison, and in the whole grape berries at harvest of differently treated ‛Rebula’ grapevines in years 2009–2011. .................................................................. 75 Table 26: PCA after varimax rotation for the nutrient contents in grape and petioles at berry set and veraison: eigevalues, cummulative of the total variance, factor loading of the 2 factors, and communality estimates of the 12 parameters. .............. 80 Table 27: Soluble solids (as sugar content and specific weight), berry weight and pH (mean values ± standard deviation; n = 3) of grape juice of differently treated ‛Rebula’ grapevines in years 2009–2011. .................................................................. 82 Table 28: Organic acid content (total acidity, tartaric and malic acids) and FAN (mean values ± standard deviation; n = 3) in whole grape berries at harvest of differently treated ‛Rebula’ grapevines in years 2009–2011. .................................... 83 Table 29: PCA after varimax rotation for ‛Rebula’ grape quality parameters at harvest 2010 and 2011: eigevalues, cummulative of the total variance, factor loading of the 2 factors, and communality estimates of the 6 parameters. ............................. 84 Table 30: Total phenolic compound content (mean values; n = 3) in juice and skins and juice volume of grape samples harvested on differently treated ‛Rebula’ grapevines in 2009. .................................................................................................... 86 Table 31: Influence of grape juice matrix on slope of calibration curve of trans-CTA. ................................................................................................................................... 87 IX Table 32: Content of total HCAs, trans-CTA, and % trans-CTA, trans-CoTA and trans-FTA in grape juice of differently treated ‛Rebula’ grapevines in 2009, 2011. 89 Table 33: Pearson’s correlation coefficients between grape total HCAs, trans-CTA and K, Mg, Fe, and Zn contents in grapes and petioles sampled in 2009 and 2011. . 91 Table 34: Total K, Mg, Fe, and Zn contents (mean values ± standard deviation; n = 3) in pot soil during the experiment (2009–2011). .................................................... 94 Table 35: pH value of extractants and soil extracts (mean value ± standard deviation). .................................................................................................................. 96 Table 36: Mean values ± standard deviation (n = 3; mg kg-1) of single soil extracted fractions of K, Mg, Fe, and Zn in the vineyard soil.a ................................................ 98 Table 37: Correlation between EDTA, CaCl , NH NO and H O-soil extractable K, 2 4 3 2 Mg, Fe and Zn and metal contents in plant tissues - grapes and petioles. ............... 100 Table 38: CaCl -extractable K concentration (mean values, n = 3) in the soil exposed 2 to different treatments in years 2009–2011. ............................................................ 103 Table 39: CaCl -extractable Mg concentration (mean values, n = 3) in the soil 2 exposed to different treatments in years 2009–2011. .............................................. 103 Table 40: Ratio K:Mg (mean values ± standard deviation; n = 3) in the soil exposed to different treatments in years 2009–2011. Ratio was determined between CaCl 2 extractable K and Mg. .............................................................................................. 105 Table 41: EDTA-extractable Fe concentration (mean values, n = 3) in the soil exposed to different treatments in years 2009–2011. .............................................. 105 Table 42: EDTA-extractable Zn concentration (mean values, n = 3) in the soil exposed to different treatments in years 2009–2011. .............................................. 106 X
Description: