ebook img

Determination of the Absolute Luminosity at the LHC PDF

165 Pages·2010·8.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Determination of the Absolute Luminosity at the LHC

LAL 10-154 Septembre 2010 THÈSE présentée le 11 octobre 2010 par Simon WHITE pour obtenir le grade de Docteur ès Sciences de l’Université Paris-Sud 11 39 Determination of the absolute luminosity 1 - 0 1 20 at the LHC - S I S E H0 1 T0 N-/2 0 R1 CE11/ Soutenue devant la commission d’examen composée de : M. H. Burkhardt M. W. Fischer Mme. V. Halyo Rapporteur M. O. Napoly Rapporteur M. P. Puzo Directeur de thèse M. G. Wormser Président Contents Introduction 7 1 BeamDynamics 9 1.1 BasicsofAccelerator Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.2 MagneticField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.3 Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.4 Quadrupoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.5 Acceleration Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 BetatronMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 TransferMatrixandStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 Courant-Snyder Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 TransverseEmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 Courant-Snyder Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.2 BeamEmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Beam-beamInteractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 TheBeam-beamForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Beam-beamParameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.3 Long-range Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.1 Head-onCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.2 OffsetCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.3 CrossingAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.4 CrossingAngleandOffsetBeams . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5.5 Hourglass Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5.6 LinearCoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.7 Integrated Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.8 MethodsforLuminosityCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 AbsoluteLuminosityFromMachineParameters 33 2.1 TheVanDerMeerMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.1 ConceptofLuminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.3 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.4 GaussianBeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.5 DoubleGaussianBeams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.6 CrossingAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 4 CONTENTS 2.1.7 Hourglass Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.8 Hourglass andCrossingAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1.9 LinearCoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 Discussion oftheUncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Statistical Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2 BeamDisplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.3 BeamCurrentTransformers(BCT) . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.4 Beam-beamEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.5 Pile-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 FromInjectiontoCollisionatHighEnergy 51 3.1 TheLHCInjectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 TheLargeHadronCollider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 LHCCommissioning andOperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4 TheLHCCrossingScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.2 Separation Bumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.3 CrossingAngle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.4 Hysteresis Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 BringingtheBeamsIntoCollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 HowFastCanWeGoIntoCollision? . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5.3 OptimizingtheCollapsing TimeviaOpticsRematching . . . . . . . . . . . . . . . 61 3.5.4 Beam-BeamEffectsWhileBringingtheBeamsintoCollisions . . . . . . . . . . . . 62 3.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 IROpticsOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 b 3.6.2 Measurements forInjection Optics . . . . . . . . . . . . . . . . . . . . . . . . . 67 (cid:3) b 3.6.3 KnobMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 (cid:3) 3.6.4 OutlookforSqueezedOpticsandConclusions . . . . . . . . . . . . . . . . . . . . 70 4 LHCInstrumentation 73 4.1 BeamPositionMonitors(BPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1 Insertion RegionBPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 TransverseEmittanceMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.1 WireScanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.2 Synchrotron LightMonitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3 Intensity Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 LuminosityMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.1 TheIonization Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4.2 TheCdTeDetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.4 SimulationResultsfortheCdTeDetector(IR2andIR8) . . . . . . . . . . . . . . . 80 4.4.5 SimulationResultsfortheIonization Chamber(IR1andIR5) . . . . . . . . . . . . 81 4.4.6 SimulationandMeasurements at350GeV . . . . . . . . . . . . . . . . . . . . . . . 82 4.4.7 FirstResultswithBeam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 CONTENTS 5 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 ExperimentalResultsfromthe2009RHICProtonRun 87 5.1 TheRelativisticHeavyIonsCollider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 BeamParametersforthe2009PolarizedProtonRun . . . . . . . . . . . . . . . . . . . . . 87 5.3 OverviewoftheMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4 DataAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.1 BeamPosition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.2 Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.3 CrossingAngleandHourglass Effect . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.4 BeamPro(cid:2)le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.6 Beam-beamDe(cid:3)ection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 ExperimentalResultsfromtheLHC 101 6.1 Implementation andProcedurefortheLHC . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1.2 OrbitBumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1.3 MachineProtection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 FirstCollisionsandOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.1 450GeVCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.2 LuminosityOptimization at450GeV . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 3.5TeVCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.4 LuminosityOptimization at3.5TeV . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.5 FirstExperiencewithHighIntensity . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 LuminosityCalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.1 Measurements Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.2 BeamPro(cid:2)leandFitMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.3 Hysteresis Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.4 BumpCalibration andLinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3.5 CrossingAngleMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.6 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.7 Emittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.8 Intensity Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3.9 Comparison withOpticsMeasurements . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3.10 FilltoFillConsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.11 Conclusions andOutlookforFutureMeasurements . . . . . . . . . . . . . . . . . . 123 7 TowardsHigherPrecision: TheHigh-b Experiments 125 (cid:3) b 7.1 WhyHigh- Optics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 (cid:3) b 7.2 High- ExperimentsintheLHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 (cid:3) 7.3 Analytical Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4 TOTEM90mOptics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 b 7.5 TOTEMveryhigh- Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 (cid:3) 7.5.1 BaselineSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.5.2 AlternativeSolutionwithQ4On . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6 CONTENTS 7.5.3 Comparison ofthePerformanceforPhysics . . . . . . . . . . . . . . . . . . . . . . 133 7.5.4 Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.5.5 Compatibility at5TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 b 7.6 ATLASVeryHigh- Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 (cid:3) 7.6.1 OpticsforPhysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6.2 Injection OpticswithQ4Inverted . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6.3 Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.7 Commissioning andRunningScenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.7.1 EarlyRunning: 3.5TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 b 7.7.2 Veryhigh- Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 (cid:3) Conclusion 143 A SoftwareforLuminosityOptimizationandCalibration 145 A.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.2 LuminosityCalibration Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 A.3 LuminosityOptimization Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 A.4 SteeringRoutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 A.5 OnlineAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 B CouplingAngleCalculation 151 Bibliography 154 Acknowledgments 161 Re´sume´ 163 Introduction Forparticle colliders, the most important performance parameters are the beam energy and the luminosity. High energies allow the particle physics experiments to study and observe new effects. The luminosity describes the ability of the collider to produce the required number of useful interactions or events. It is de(cid:2)ned as the proportionality factor between the event rate, measured by the experiments, and the cross section of the observed event which describes its probability to occur. The absolute knowledge of the luminosity therefore allowstheexperiments tomeasuretheabsolute crosssections. TheLargeHadronCollider(LHC)wasdesignedtoproduceprotonprotoncollisionsatacenterofmass energy of 14TeV. This energy would be the highest ever reached in a particle accelerator. The knowledge andunderstandingofparticlephysicsatsuchhighenergyisbasedonsimulationsandtheoreticalpredictions. As opposed to e+ e colliders, for which the Bhabba scattering cross section can be accurately calculated (cid:0) and used for luminosity calibration, there are no processes with well known cross sections and suf(cid:2)ciently high production rate to be directly used for the purpose of luminosity calibration in the early operation of theLHC. The luminosity can also be expressed as a function of the number of charges per beam and the beam sizes at the interaction point. Using this relation, the absolute luminosity can be determined from machine parameters. Thedetermination of the absolute luminosity from machine parameters is an alternative to the crosssectionbasedcalibration andprovidescomplementary informationtothefragmentation model. Inthe LHC,itwasproposedtousethemethoddevelopedbyS.VanDerMeerattheISR[1]toprovidealuminosity calibration basedonmachineparameterstothephysicsexperiments duringthe(cid:2)rstyearofoperation. Theworkpresented inthis thesis started in2007. Atthetime,theLHCwasexpected to start operating in 2008 and to produce collisions at the design center of mass energy of 14TeV. Some of the studies and simulations intended as a preparation for luminosity calibration were done for this original design energy. After a very successful start-up in 2008 issues were found that required a major repair and consolidation which resulted in an extended shutdown period of one year. Operation resumed in 2009 with a reduced targetcenterofmassenergyof7TeVandthe(cid:2)rstcollisions wereproduced inMarch2010. This shutdown period was used to extend the scope of this thesis to more general studies such as lu- minosity optimization, optics studies and operation in collision. It also allowed for a collaboration with BNL.Luminosity calibration measurements were performed at the RHICcollider in 2009 as a preparation for LHCstart-up. The RHICcollider is in some sense very similar to the LHCand most of the experience acquired during this collaboration could directly be applied to the LHC. Differences still exist and beam dynamics or instrumental effects have tobe considered whileanalyzing theRHICdata which do not apply totheLHC.Theworkpresented heretherefore includes moregeneral considerations notdirectly related to thecalibration oftheluminosityattheLHC. Chapter 1 of this thesis is intended as an introduction to general accelerators physics concepts and de(cid:2)nitions that will be used in the following chapters. The principles of transverse beam dynamics are explained as well as some basic notions related to beam-beam interactions. General expressions of the luminosity are derived including complications such as the presence of a crossing angle or the hourglass effect. 7 8 INTRODUCTION Chapter 2 focuses on the Van Der Meer method. The principle of the method and implications of the effects introduced in Chapter 1 are discussed. Most of these effects are small and well controllable under speci(cid:2)c beam conditions. Initial estimates on the expected uncertainty related to luminosity calibration in theLHCarediscussed. Chapter3and4giveanoverviewoftheCERNacceleratorcomplexfocusingontheLHCanditsinstru- mentation. Beamdynamicsandopticsstudiesrelatedtotheoptimizationofthecollisionsandmoregenerally oftheinteraction regionsareshownaswellastrackingsimulations fortheLHCluminosity monitors. Chapter 5 and 6 present the results obtained at the LHCand RHICduring luminosity calibration mea- surements. Adetailedanalysisofthesystematicsuncertaintiesassociatedtothemeasurementandproposals forfutureimprovementsarediscussed. Chapter6alsodescribesmorespeci(cid:2)callytheprocedureandimplementationofthetoolsforluminosity optimization andcalibration attheLHCaswellasthe(cid:2)rstexperience withoperation incollision. Finally, in Chapter 7, an alternative method for luminosity calibration is introduced. Dedicated optics arerequiredforthismeasurement. Anoverviewofthestudyandperformance oftheseopticsispresented. Mypersonnalworkcanbefoundinsomeofthederivationsoftheluminosity presentedinChapter 1,in Chapter 2, in the second part of Chapter 3 and Chapter 4 and in the last three Chapters of this thesis. The luminosity scan software was written as part of this thesis and was used to collide and optimize the LHC beamsforthe(cid:2)rsttime. Itisnowusedonaregularbasisandrepresents mymostsigni(cid:2)cantcontribution to LHCoperation. Chapter 1 Beam Dynamics This Chapter aims at introducing some general concepts of beam dynamics and de(cid:2)ning common param- eters and formalism that will be used in this thesis. General equations of the motion of the particles in an accelerator will be derived as well as a de(cid:2)nition of the beam-beam interactions. More speci(cid:2)cally, the concept ofluminosity anditscalculation under various conditions willbedetailed asanintroduction tothe followingchapters. 1.1 Basics of Accelerator Physics A charged particle with charge q, momentum~p and velocity~v in the electromagnetic (cid:2)elds (~E;~B) experi- encestheLorentz’s force ~F: d~p ~F =q(~E+~v ~B)= : (1.1) (cid:2) dt In an accelerator, the charged particles gain energy by their interaction with the electric (cid:2)eld ~E. The magnetic force~v ~B is perpendicular to both~v and ~B. The trajectory of a charged particle will be curved (cid:2) when it passes through adipole magnet. Atrelativistic velocities an electric (cid:2)eld E and amagnetic (cid:2)eld B havethesameeffectforE =cB. Amagnetic(cid:2)eldof1Twouldthenbetheequivalentofanelectric(cid:2)eldof 3:108V.m 1. Producing such an electric (cid:2)eld is far beyond technical limits for current magnet designs, as (cid:0) aresult wealways usemagnetic (cid:2)eldstosteer thebeams. Thephysical fundamentals of beamsteering and focusing arecalledbeamoptics. 1.1.1 CoordinateSystem Wecande(cid:2)ne acoordinate system shown inFigure 1.1 to describe the path of the particles in which swill describe the longitudinal direction along the reference orbit. x and y will de(cid:2)ne the transverse plane and r furthermorethedeviationfromthereference. Locallythetrajectoryhasaradiusofcurvature . Inacircular accelerator the elements the beam is passing through can be straight or curved, this coordinate system is therefore curvilinear. The trajectory of the reference particle ~r is the one that has null x and y coordinates 0 foralls. Theparticletrajectory aroundthereference orbitcanbeexpressed as: ~r=~r (s)+xx(cid:136)(s)+yy(cid:136)(s); (1.2) 0 wherex(cid:136)andy(cid:136)aretheunitvectorsinthetransverse plane. 9 10 CHAPTER1:BEAMDYNAMICS Figure1.1: Coordinate System. 1.1.2 MagneticField Themagnetic(cid:2)eldcomponentinthesdirectioncanbeapproximatedtozero. Themagnetic(cid:2)eldinamagnet isthenexpressedas: ~B=B x(cid:136)+B y(cid:136): (1.3) x y Using the (cid:2)rst order Taylor expension, the (cid:2)eld components can be expressed as function of a dipolar andquadrupolar term: ¶ B B =B (0;0)+ xy+o(y2); x x ¶ y ¶ B B =B (0;0)+ yx+o(x2): (1.4) y y ¶ x Inanaccelerator, B (0;0) issetto0and B (0;0)isrequired tocompensate forthe centrifugal force. In x y addition theMaxwellequation~(cid:209) ~B=0imposes: (cid:2) ¶ B ¶ B x y = : (1.5) ¶ y ¶ x 1.1.3 Dipoles q Dipolemagnetsareusedtoguidethecharged particlesalongtheclosedorbit. Thebending angle isgiven bytheLorentzforcelaw: q = q s2 Bdl= 1 s2 Bdl: (1.6) pZ Br Z s s 1 1 p Thetotalbendingangleofacircular accelerator is2 ,andthetotalintegrated dipole (cid:2)eldis: 2p p Bdl= =2p Br ; (1.7) I q

Description:
CERN-THESIS-2010-139 11/10/2010. LAL 10-154. Septembre 2010. THÈSE . 3.4.2 Separation Bumps 6.3.4 Bump Calibration and Linearity .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.