ebook img

Determination of robust metallicities for metal-rich red giant branch stars PDF

3.2 MB·
by  C. Liu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Determination of robust metallicities for metal-rich red giant branch stars

Astronomy&Astrophysicsmanuscriptno. NGC6528 (cid:13)cESO2017 January24,2017 Determination of robust metallicities for metal-rich red giant branch stars (cid:63) An application to the globular cluster NGC6528 C.Liu1,2,G.Ruchti1,S.Feltzing1,andF.Primas3 1 LundObservatory,DepartmentofAstronomyandTheoreticalPhysics,Box43,SE–22100Lund,Sweden e-mail:[cheng, greg, sofia]@astro.lu.se 2 KeyLabofOpticalAstronomy,NationalAstronomicalObservatories,ChineseAcademyofSciences,A20DatunRoad,Chaoyang, 7 Beijing100012,China 1 3 EuropeanSouthernObservatory,D-85748Garching,Germany 0 e-mail:[email protected] 2 Received05May2016;accepted05January2017 n a J ABSTRACT 2 Context. ThestudyoftheMilkyWayreliesonourabilitytointerpretthelightfromstarscorrectly. Withtheadventoftheastro- 2 metricESAmissionGaiawewillenteranewerawherethestudyoftheMilkyWaycanbeundertakenonmuchlargerscalesthan currentlypossible. Inparticularwewillbeabletoobtainfull3Dspacemotionsofredgiantstarsatlargedistances. Thiscallsfor ] A areinvestigationofhowreliablywecandetermine,e.g.,ironabundancesinsuchstarsandhowwelltheyreproducethoseofdwarf stars. G Aims. Hereweexplorerobustwaystodeterminetheironcontentofmetal-richgiantstars. Weaimtounderstandwhatbiasesand . shortcomingswidelyappliedmethodssufferfrom. h Methods. In this study we are mainly concerned with standard methods to analyse stellar spectra. This includes the analysis of p individuallinestodeterminestellarparameters,analysisofthebroadwingsofcertainlines(e.g.,Hαandcalciumlines)todetermine o- effectivetemperatureandsurfacegravityforthestars. r Results. ForNGC6528wefindthat[Fe/H]=+0.04dexwithascatterofσ = 0.07dex,whichgivesanerrorinthederivedmean t abundanceof0.02dex. as Conclusions. Our work has two important conclusions for analysis of metal-rich red giant branch stars. 1) For spectra with S/N [ belowabout35perreducedpixel[Fe/H]becometoohigh,2)DeterminationofTeff usingthewingsoftheHαlineresultsin[Fe/H] valuesabout0.1dexhigherthanifexcitationalequilibriumisused.ThelastconclusionisperhapsnotsurprisingasweexpectNLTE 1 effecttobecomemoreprominentincoolerstarsandwecannotusethethewingsoftheHαlinetodetermineTeffforthecoolstarsin v oursample.Wethereforerecommendthatinstudiesofmetal-richredgiantstarscareneedstobetakentoobtainsufficientcalibration 2 datainordertobeabletoalsousethecoolerstars. 3 1 Keywords. Galaxy:bulge–globularclusters:individual:NGC6528–stars:atmospheres–stars:fundamentalparameters 6 0 1.1. Introduction rich giants, such as those seen in the Galactic bulge and old, 0 metal-rich globular clusters. We are interested in providing a Theanalysisofspectraofredgiantbranchstarsisproblematic. 7 better understanding of the influence on the derived iron abun- 1Asweprogressalongtheredgiantbranchupwards,tocoolerand dancefromthesignal-to-noiseratio(S/N)intheanalysedspectra :lowergravitystarsanumberofphenomenastartappearingmore andanyinfluenceonthemethodusedtodeterminetheotherstel- v iandmorestronglyinthespectra. Inparticular,theatomiclines larparameters,e.g.,Teff andlogg,onthefinalironabundance. Xgetstronger,causingmoreblendsandthecooleratmospheresal- lowfortheformationofmoleculessuchasTiO,CN,andMgH Whyisthisinteresting? ThestudyoftheMilkyWayhasin r aresulting in strong molecular features. This makes it progres- thelastcoupleofdecadesbecomeamajorareainastrophysics. sivelymoreandmoredifficulttofind(ordefine)thecontinuum Thisisduetotwoinfluentialastrometricmissions: thepastHip- inthespectrum. Asmanymethodsrelyontheidentificationof parcosmission(Perrymanetal.1997)andthecurrentGaiamis- thecontinuum,thiscausesaproblem. sion (Brown 2013; Perryman et al. 2001, where the first paper Ourmainaimwiththepresentinvestigationistostudyhow describestheconceptbehindtheGaiaproposaltotheEuropean wecan,inarobustway,determinetheironabundanceformetal- SpaceAgencyandthesecondpapergivesanoverviewof,Gaia justbeforelaunch).TheHipparcoscatalogueenabledanewtype (cid:63) BasedonobservationsmadewiththeESO/VLT,atParanalObser- of studies with determination of accurate velocities and ages for samples consisting of many hundreds of stars near the sun vatory, under programme 067.B-0382(A) and on data obtained from the ESO Science Archive Facility under programme 065.L-0340(A), (e.g., Adibekyan et al. 2013, 2012; Bensby et al. 2004, 2014; 067.D-0489(A), and 077.B-0327(A) and from the Keck Observatory Fuhrmann2011;Soubiran&Girard2005). Thesestudieswere ArchiveunderprogrammeC53HandC19H. doneonFandGdwarfstars.However,Gaiawillprovidedataof Articlenumber,page1of25 Table1.BasicdataforNGC6528 archives. Inthearchivewefoundspectraof34starsthatarepo- tentialmembersofNGC6528. Ofthese12havebeenobserved R.A. Dec. (m-M) E(B-V) by UVES on VLT in stand-alone mode, 20 with UVES as part 180449.64 –300322.6 16.17 0.54 of FLAMES observations, and 2 stars had been observed with HIRESonKECK.Table2listsbasicinformationaboutthestars the same quality as Hipparcos for a significantly larger volume andobservations. Thereisnooverlapbetweentheobservations oftheMilkyWay,reachingallthewayintotheGalacticbulge. fromthedifferentprogrammes. Belowwedescribethedifferent But,thestarsavailableforspectroscopicworkwill(astoday)be data-setsinsomedetail. the red giant branch stars as these are intrinsically sufficiently bright to be possible to observe with current instrumentation at Stars observed with UVES: Our starting data-set consists of adistanceof8kpc. Theonlyoptiontoobtainspectrafordwarf observations of seven stars carried out in 2001 at the VLT 8- starsintheGalacticbulgeiscurrentlytotakeadvantageofmi- mtelescopeusingtheUVESspectrograph(Dekkeretal.2000) crolensing events (e.g., Bensby et al. 2013). This is, however, under our program 067.B-0382(A) (PI: S. Feltzing). The stars notanoptionifwewanttostudylargesamples. Thusitremains wereselectedasmembersofNGC6528basedonapropermo- importanttostudyhowwebestcandeterminestellarparameters tionstudyusinghigh-resolutionimagesandVIphotometryfrom andelementalabundancesofevolvedredgiantstarsinarobust HST (see Feltzing & Johnson 2002). In the ESO archive we manner. Thispaperdealswiththistopic. found an additional five stars observed with UVES from pro- The spectroscopic and photometric data Gaia benchmark gramme 065.L-0340(A) and 067.D-0489(A) (PI: D. Minniti). stars and stars in the metal-rich globular cluster NGC6528 are Thesewereallobservedin2000and2001,respectively. presented in Sect. 2. Our basic tools and linelist are described Theresolutionoftheobservationsis45000or55000inthe inSect.3. Todeterminestellarparametersforredgiantsweex- redarm(480–680nm)dependingontheslitwidthused(0.8”or ploredifferentmethodsandtestthemonthebenchmarkstarsin 1.0”). The observations were all done using the standard setup Sect. 4. In Sect. 5 we apply our analysis to stars in NGC6528 580 with CD #3. The exposures have been split in order to al- and discuss problems in the analysis. In Sect. 6, we determine low for the removal of cosmic ray hits. The data were reduced [Fe/H] for NGC6528. Section 7 provides our conclusions and usingtheUVESpipeline(Ballesteretal.2000),includingbias, discussesfuturedevelopments. inter-orderbackgroundsubtraction, flatfieldcorrection, extrac- tion, and wavelength calibration. All the echelle orders were thenmergedintoa1Dspectrumforeachexposure. 2. Descriptionofdata In the archive we found 20 stars which are potential mem- 2.1. Spectra bers of NGC 6528 from program 077.B-0327(A) (PI: M. Zoc- cali)whichwasobservedin2006. 2.1.1. Benchmarkstars The multi-object optical spectrograph FLAMES (Pasquini In order to work out the best analysis techniques for metal- etal.2002)hastwoparts,onebeingFLAMES-UVESwhichhas rich cool giant stars we make use of spectra of stars with well- 8roboticfiberswhichfeedtheUVESspectrographatVLT.The determined stellar parameters, the so called Gaia benchmark spectrahaveR∼47000andtheobservationsweredonewiththe stars (Heiteret al. 2015a). Thesehave a wealthof high quality setup centred at 580 nm (wavelength coverage: 480–680 nm). data available, in particular they have interferrometric observa- WereducedtherawframesusingtheFLAMES-UVESpipeline tionsenablingadirectdeterminationoftheirradiiandeffective in a standard way. After all the recipes, which include creat- temperatures(Teff). Asweareinterestedinmetal-richstars,we ing a master bias and the master slit flat-field frame, determin- selectedtenredgiantswhichhaveironabundancesgreaterthan ingthefiberordertable,thewavelengthsolution,andextracting –0.55dex(Jofréetal.2014). Thetenstars,whichhaveTeff sim- the science frame, of the pipeline have been executed we sub- ilar to the star’s of NGC6528, are Arcturus, µLeo, HD107328, tracttheskybackgroundspectrumfromthestellarspectra. For βGem,(cid:15)Vir,ξHya,αCet,γSge,αTau,andβAra. Theirreference FLAMES-UVEStheskybackgroundisusuallyobservedbyone valuesforthestellarparametersarelistedinTable 3. fiber placed in an empty part of the sky. With the sky back- The fifteen spectra with high S/N (> 250) were taken from ground removed, we shifted the sky-subtracted spectra to a he- theESOarchiveandfromobservationsdonewithNARVAL.The liocentric reference frame making use of the packages RVSAO spectrafromtheESOarchiveconsistofobservationstakenwith andDOPCORwithinIRAF1. UVES (Dekker et al. 2000) and HARPS (Mayor et al. 2003). To improve the S/N, we co-added all the UVES spectra of TheNARVALspectraarefurtherdescribedinBlanco-Cuaresma thesamestarintoasinglespectrum.TheaverageS/Nofthefinal etal.(2014),whichalsogivesdetailsonhowtoretrievethespec- co-addedspectrumforeachstarwasestimatedbymakinguseof tra from their archive. It should be noted that five stars, µLeo, the SPLOT task within IRAF at three short wavelength regions βGem, ξHya, αCet, and γSge, have one spectrum each, while (574.4 − 574.7nm, 604.7 − 606.3nm, and 606.8 − 607.6nm). the rest of stars have two spectra observed in different instru- TheS/Nisgreaterthan30perpixelformostofthespectra(see ments. For example, the star Arcturus was observed with the Table2). NARVAL and UVES spectrographs, while βAra was observed withtheHARPSandUVESspectrographs. Stars observed with HIRES: We collected spectra of two red horizontal branch stars (3014 and 3025) from the Keck Obser- 2.1.2. StarsinNGC6528 vatoryarchive. TheobservationsweretakenwithHIRES(Vogt The basis for our study of stars in NGC6528 is our own ob- 1 IRAFisdistributedbytheNationalOpticalAstronomyObservatory, servations of 7 stars that were observed in 2001. In order to whichisoperatedbytheAssociationofUniversitiesforResearchinAs- have a statistically significant sample of spectra of red giant tronomy(AURA)undercooperativeagreementwiththeNationalSci- starsinNGC6528wefurthersearchedtheESOandtheKECK enceFundation. Articlenumber,page2of25 C.Liu etal.:Determinationofrobustmetallicitiesformetal-richredgiantbranchstars etal.1994)atKeckIundertheprogrammeC53HandC19H(PI: J.Cohen)in1999and2000,respectively. 5 4 Since the HIRES detector is not large enough to yield full spectralcoverage,thereisagap(1.0−6.0nm)betweenanytwo 3 echelleorders. TherawspectrawerereducedusingtheMAKEE 2 package. Itdeterminesthepositionofeachechelleorder, de- 2 finestheobjectandbackgroundextractionboundaries,optimally ) 1 extractsaspectrumforeachorder,andcomputewavelengthcal- /s m ibrationsnon-interactively. k 0 ( Weco-addedthespectraofeachstarintoonespectrum. The ∆vr -1 measuredmeanS/Noftheco-addedspectrawasestimatedinthe -2 samewayasfortheUVESspectra(Table2). -3 -4 2.2. AdditionaldataforNGC6528 -5 -150 -100 -50 0 50 100 150 200 2.2.1. Photometry vr(com. spectra)(km/s) Fig.1. Comparisonofradialvelocitiesforthestarsderivedfromthe In order to estimate good starting values for Teff for our stars combinedspectrumandfromtheindividualspectraseparatelyandthen wemakeuseofcolour-temperature-metallicityrelations. Tothis averaged (see Sect.2.2.3). The x-axis shows the value derived from end we collected near-infrared photometric data from 2MASS the combined spectra whilst the y-axis shows the difference between (Cutri et al. 2003) and VVV (VISTA Variables in Via Lactea) v determinedinthetwoways. Theerror-barsforthedifferenceisthe r (Minnitietal.2010). coaddederrorsestimatedfromIRAF(forthecombinedspectra)andthe σaroundthemeanfortheindependentmeasures. Errorsonthex-axis The survey area of VVV is fully imaged in five photomet- aretoosmalltobeseen. ric bands: Z,Y,J,H,K and 2MASS has imaging in J,H,K . s s VVV goes about 4 magnitutes deeper than 2MASS. However, the larger telescope aperture of VISTA results in saturation for the brightest stars. The saturation magnitude in the VVV pho- tometryoccursatK <12. Wethereforeadopt2MASSphotom- s etryforstarsbrighterthan12maginK andwerequirethatthe 2.2.3. Radialvelocities s photometric quality flag is AAA, i.e. the best quality. For all otherstarsweuseVISTAphotometry. Radial velocities (v) with respect to the Sun were derived us- r There is a very small offset between the zero-points of the ing the RVSAO package within IRAF. The XCSAO task cross- VVVand2MASScatalogs. Toensurethatallphotometryison correlates a template spectrum with the observed spectrum and thesamesystemwehavechosentotransfertheVVVphotometry reportsthevelocitydifferencebetweenthetwo. Hereweuseda ontothe2MASSphotometricsystemasthisisthesystemmost template spectrum from the radial velocity standard star (cid:15) Peg. commonly used in the available temperature calibrations. The The resolution of the spectrum is similar to that for the spectra followingzero-pointoffsetshavebeenapplied: (J −J )= ofoursamplespectra. 2mass vvv 0.029; (H − H ) = −0.039; (K − K ) = −0.028 2mass vvv s,2mass s,vvv (Gonzalezetal.2011). Eachofourstarshavemorethanoneobservation(Table2). The spectra are often taken at different nights and sometimes evenmonthsapart. Thisallowsustoderivev intwoways,en- r 2.2.2. Reddening ablingatestofthequalityofourresults. Firstweextractedall spectraandcorrectedthemforEarth’smotioninordertoco-add them. Radialvelocitieswerethendeterminedusingthesecom- ReddeningisimportantfortheinitialestimateofTeff,butitcan binedspectra. Intheotherapproachwederivedtheradialveloc- alsobeofinterestwhendiscussingthepropertiesofthecluster. ityforeachobservationindividually. Theseindividualmeasure- Here we make use of the recent reddening maps by Gonzalez mentswerethenaveragedandthescatteraroundthemeanwas etal.(2011,2012)toestimatethereddeningtowardsourstars. calculated. Typically, the scatter around the mean radial veloc- As the maximum sky resolution of the reddening map is ities is less than 0.50 km s−1. We find that the two approaches 2(cid:48), we assumed that the stars are subject to the same redden- giveverysimilarresults(compareFig.1). ing within a 4(cid:48) × 4(cid:48) box. The observed targets are spread in a relatively large area, the total coverage of the dereddened re- Forunknownreasons,weareunabletorecovertheradialve- gion is 28(cid:48) ×28(cid:48) consisting of 49 boxes of 4(cid:48) ×4(cid:48). The mean locities determined by Carretta et al. (2001) for star 3014 and extinction,A ,andcolourexcess,E(J−K ),arecalculatedus- 3025. Our results are about 50 km s−1 larger than the values Ks s ing BEAM3 which uses the extinction law from Cardelli et al. givenbythem. Asfarasweunderstandweareusingthesame (1989). TheadoptedcoefficientsforJ,H,andK (inthe2MASS spectra and same reduction software. In Table 2 we list the s passbands)are:A =1.692E(J−K ),A =1.054E(J−K ),A value from Carretta et al. (2001). Apart from this difference =0.689E(J−K ).JWhereA =0.6s89E(HB−V). ThederedsdeneKds ourderivedvelocitiesagreewellwiththoseintheliterature(see s Ks magnitudesofJ,H,andK arelistedinTable2. Sect.2.3). s Articlenumber,page3of25 Tsantakietal.(2013),DenHartogetal.(2014),andthelinelist 12 compiledfortheGaia-ESOsurvey(Heiteretal.,inprep.andref- 12 erencestherein)(seealso,Heiteretal.2015b). Inparticular,we 10 10 stars 8 selected90Feiand16Feiilines. Allourlineswereexamined of 6 in the spectra of the Sun and ξHya. ξHya is a relatively cool mber 4 and metal-rich star with stellar parameters similar to those in s 8 Nu 2 oursampleofstarsinNGC6528andstarsintheGalacticbulge r sta 0190 200 210 220 230 (comparevaluesinTable4). Firstly,thesetwospectrawereused of 6 vr(com.spectra)(km/s) tocheckthatthelinesarecleanandpossibletoanalyseinmetal- r richgiantstars. Secondly,theequivalentwidth(EW)oflinesin e mb the two stars were measured. Because the strong lines are sen- u sitive to the selection of the microturbulent velocity (Fulbright N 4 etal.2006)andmightsufferfromtheeffectsofimpropermodel- ingoftheouterlayersinstellaratmospheremodels(McWilliam 2 et al. 1995), all lines with EWs higher than 130 mÅ were re- movedfromourlinelist. 0 Ascoolandmetal-richstarshavemoremolecularlinesthan -150 -100 -50 0 50 100 150 200 250 warmerstars,wemakeanextrachecktomakesurethatourlines vr(com. spectra)(km/s) arenotblendedbymolecules. Forthischeck,weusedthespec- trumsyntheticprogram(seedescribedin 3.2)andthecomplete Fig. 2. Distribution of measured heliocentric radial velocities for VALD(Kupkaetal.1999,2000,seealsoreferencesinthedata- our program stars. The inset in the top-left corner shows a zoom-in base) line list containing all metal and molecular lines to com- high-lightingthevelocitydistributionoftheclustermembersfittedbya Gaussian.Theredcrossindicatesthemean(212.1kms−1)andstandard puteasyntheticspectrum. Togenerateaspectrumofacooland deviation(4.2kms−1)oftheradialvelocityfortheclustermembers. metal-rich giant, the typical stellar parameters (Teff = 4500 K, logg=2.0,[Fe/H]=+0.1dex)wereinterpolatedintheMARCS model atmospheres (Gustafsson et al. 2008). We examined all the lines by eye and found that most of them are free of TiO, 2.3. Membership CN, C2, and MgH within 0.2 mÅ of the center of the Fe line. Membership of globular clusters for individual stars is com- SixteenFelinesmightsufferaweakcontaminationfromtheCN monly determined using radial velocities (e.g., Simmerer et al. lines. This suggests that our final measured stellar parameters 2013) or proper motions relative to the background and fore- andabundanceshouldnothavealargesystematicerrorscaused ground stars (e.g., Zoccali et al. 2001). NGC6528 has a ra- bytheblendingofmolecularlines. dialvelocityof∼210kms−1 (Carrettaetal.2001;Zoccalietal. The oscillator strength (loggf) for the Hα line is adopted 2004)andapropermotionrelativetothebackgroundbulgepop- from the VALD database. The atomic data for the Cai lines ulationof< l >=0.006and< b >=0.044arcsecpercentury are taken from Smith & Raggett (1981), apart from the loggf (Feltzing&Johnson2002).Thismeansthatradialvelocityisthe values for Cai 612.2 and 616.2nm, which are from Aldenius bestwaytodeterminemembershipforthiscluster. Usingmea- etal.(2009). surements from the luminous stars in globular clusters, as well Thefulllistoflines,includingreferencestoatomicdata,can as their integrated spectra, Pryor & Meylan (1993) determined befoundintheon-lineAppendixB(TableB.1). thevelocitydispersionsformanyglobularclusters. Theyfound thattypicalvelocitydispersionsinglobularclustersislessthan 10kms−1. 3.2. Spectralanlaysis–SME Figure2showsthedistributionofradialvelocitiesforallour WeuseSpectroscopyMadeEasy(SME,Valenti&Fischer2005; stars. There is a clustering of stars just above 200kms−1. To Valenti&Piskunov1996)todeterminethestellarparametersby findthemeanvelocityandvelocitydispersionofNGC6528,we comparing synthetic spectra with observed spectra. SME uses started by considering stars with a radial velocity in the range theLevenberg-Marquardt(LM)algorithmtooptimizestellarpa- 155−240kms−1. For these we calculated the mean and stan- rametersbyfittingobservedspectrawithsyntheticspectra. The darddeviation(σ)oftheradialvelocity. Wethenproceededto LMalgorithmcombinesgradientsearchandlinearizationmeth- exclude stars more than 3σ from the mean value and the mean ods to determine parameter values that yield a chi-square (χ2) and σ were re-calculated. This procedure was iterated until no valueclosetotheminimum. Stellarparametersandatomicline more stars could be excluded with a 3σ-clipping. This left 26 data are required to generate a synthetic spectrum. In addition stars for which we found a mean velocity of 212.1 km s−1 and to specified narrow wavelength segments of the observed spec- σ = 4.2 km s−1. Our velocity dispersion is in good agreement trum, SME requires line masks in order to compare with syn- withthevalueof4.0kms−1measuredbyCarrettaetal.(2001). thetic spectrum and determine velocity shifts, and continuum masks that are used to normalize the spectral segments. The homogeneous segments and masks are created to fit all of our 3. Linelistandanalysistool solarsiblingcandidates. 3.1. Linelist SME needs input values for Teff, logg, [Fe/H], microtur- bulence (v ), macroturbulence (v ), and rotational velocity Toassemblethelinelistwemadeuseofseveralsources.Foriron mic mac (vsini). Given initial stellar parameters, the model atmospheres we selected 106 clean lines between 470 nm and 690 nm from areinterpolatedintheprecomputedMARCSmodelatmosphere 2 http://www.astro.caltech.edu/tb/ipac_staff/tab/makee/index.html grid,whichhasstandardcompositionofelementalabundances. 3 http://mill.astro.puc.cl/BEAM/calculator.php WethenconfiguredSMEtofiteachstellarspectrumbyadjust- Articlenumber,page4of25 C.Liu etal.:Determinationofrobustmetallicitiesformetal-richredgiantbranchstars This comparison shows that our line data and method of 0.3 analysing the iron lines (assuming all other parameters to be FeI+FeII FeI known) is fully compatible with those in Jofré et al. (2014) 0.2 FeII whohasestablishedthereferencevaluesfortheGaiabenchmark 0.1 stars. H]r 0 / Fe −[-0.1 4. Lookingforarobustmethodtodetermine[Fe/H] H]x formetal-richredgiantstarsfromopticalspectra /-0.2 Fe [ -0.3 4.1. Methodstoderiveeffectivetemperature -0.4 Effectivetemperaturescanbederivedfromstellarspectrausing severalmethods. Feiisthemostcommonionintermsoflines -0.5 intheopticalspectrum. AslinesarisingfromtheFeiionhavea 3800 4000 4200 4400 4600 4800 5000 5200 Teff,r widerangeoflinestrengthsaswellasexcitationpotentialsitisin principlestraightforwardtodetermineTeff forthestarbyrequir- Fig. 3. Test of the ability of our linelist to reproduce the reference ing Fei lines with differing excitation potentials to produce the [Fe/H]fortheGaiabenchmarkstars. They-axisshowsthedifference sameironabundances(e.g.,Edvardssonetal.1993). Thisanal- betweenthevaluewederive,usingthereferenceTeff andloggbutour ysisrestsontheassumptionoflocalthermalequilibrium(LTE). ownlinelistandSME,andthereferencevalue. Wederived[Fe/H]in However, several studies suggest that this assumption does not three ways: using both Fei and Feii lines (blue filled squares), using necessarilyhold(e.g.,Fuhrmann1998;Mashonkinaetal.2011; onlyFeilines(redfilledcircles),andusingonlyFeiilines(blackfilled Ruchti et al. 2013; Thévenin & Idiart 1999). Recently, NLTE triangles). The stars can be identified using the Teff values which are calculations, e.g., from Bergemann et al. (2012), have been in- givenonthex-axis.Forsomeofthestarswehavemorethanonespec- trum.Resultsforbothareshownintheplot. cludedintosomestudies(e.g.,Ruchtietal.2013). However,at solarmetallicitiesthedifferencebetweenLTEandNLTEresults for Fei tend to be very small for metal-rich stars (Ruchti et al. 2013)andwecanthusneglectthemhere. Determinationofthe ingthefreeparameters(seeSect.4). Theconvergenceis(likely) ironabundanceisaby-productwhenTeff isderivedinthisway speedier if we start with realistic initial values. However, it anderrorsintheTeff andironabundancemustcorrelate. shouldbenotedthatSMEiscapableofconvergingtothecorrect AnothermethodtoderiveTeff istousethestronghydrogen valuesalsoifwestartfrominitialvaluesthatarefarofffromthe lines present in stellar spectra as these lines change rapidly in correct ones (Daniel Adén, priv.comm., tests for the Gaia-ESO strength as a function of Teff. These lines also have no grav- Survey). ity dependence in cool stars. Most commonly, Teff is derived from the synthesis of the extended wings of the Hα and Hβ lines(e.g.,Barklemetal.2002;Ruchtietal.2013). Thismake 3.2.1. Canourlinelistreproduce[Fe/H]forstarswithknown themveryusefulfordeterminingthetemperatureforstarswith metallicites? Teff < 8000K(Gray2005). Withthismethodironmustbede- terminedindependentlyandhencetheerrorsarenotcorrelated. Beforestartingourinvestigation,wefirstcheckedhowwellour set-upandlinelistreproducesthereferencevaluesfor[Fe/H]for Another approach is to use line-depth ratios to derive Teff (Gray 1994). One advantage of using line-depth ratios is that thebenchmarkstars. these do not depend on the metallicity of the star. In the visi- To this end we analysed the spectra fixing Teff and logg to blespectralrange,unblendedSi,Ti,V,Cr,FeandNiline-depth therecommendedvalues(Table3).Wedidthreesetsofanalysis: one where both Fei and Feii lines were fitted, one where only rations can be used to estimate Teff. There are not many appli- cationsofthismethodintheliterature,butKovtyukh&Gorlova Feilineswerefitted,andonewhereonlyFeiilineswerefitted. (2000)illustratedthattheline-depthratiosarepowerfulindica- Ineachcasealllineswereallfittedsimultaneously. tors of Teff at least for supergiants. We will not further explore TheresultsareshowninFig.3. WefindthatwhenwefitFei thismethodhere. andFeiilinessimultaneouslythedifferencebetweenourvalues Finally,wecanusecalibrationofstellarphotometrytoderive and the recommended values is 0.01dex with a σ of 0.10dex. Teff from a colour index, such as (B−V)0 (see, e.g., González Figure3showsthatitisthecooleststarsthatdrivesthesizeof Hernández&Bonifacio2009). Thismethodhasitslimitations. the scatter, whilst the warmer stars have a smaller difference. Forexample,forstarsintheGalacticbulgeorintheplaneofthe WhenwefitonlytheFeilinesthedifferenceis0.01dexwitha Galaxythephotometricapproachishamperedbythepoorlyde- σof0.07dex,andwhenweanalysetheFeiilinesonlywefind termined reddening of individual stellar colours. Although this adifferenceof0.03dexwithaσof0.07dex. Therearenodis- methodisnotverydependableforbulgestars,thankstothelarge cernibletrendswithTeff,althoughthereisaweakindicationthat reddeningalongtheline-of-sight,itneverthelessprovidesuseful Feiilinesdoabetterjobinreproducingthereferencevaluesfor startingvaluesforouranalysis. the coolest stars (αCet, γSge, and αTau) while in the warmest stars(βGem,(cid:15)Vir,andξHya)Feilinesappeartodoamuchbet- terbetterjobthantheFeiilines. However,thetrendisweakand 4.2. Methodstoderivesurfacegravity more data would be needed to draw a firm conclusion regard- ingifcertainspeciesarebetteratacertaintemperaturerangefor It is common to measure logg by imposing ionization equilib- thesetypesofstars. riumwhichmeansthatwerequireFeiandFeiilinestoproduce Articlenumber,page5of25 thesameabundance4. Feiilinescanbeweakandtheyarenotas those in Jofré et al. (2014). Rotational velocities of red giants numerousastheFeilines. Thismethodthusrequireshighqual- and horizontal branch stars are typically small (vsini < 5 km ityspectrawithlargewavelengthcoverage. Asdiscussedabove s−1), therefore a good assumption is to set vsini to 1 km s−1. (Sect.4.1)FeilinescanbesusceptibletodeparturesfromLTE. Which is what we do for the rest of this paper. We note that ThisisnottrueforFeiilines.Whichmeansthationizationalbal- thereisoftenadegeneracybetweenvsiniandv whichishard mac ancecanbeinfluencedbydeparturesfromLTE.Determination tobreakintheanalysis. Forthetypeofstudypresentedhere– oftheironabundanceisaby-productofthismethodanderrors where the aim is to get the best measure of [Fe/H] – the exact inloggand[Fe/H]mustcorrelate. values of these two parameters is of less relevance to the final Severallinesshowstronglypressure-broadenedwingsinthe outcome of the investigation and we can allow them to be de- spectra of cooler stars. This means that the surface gravity of generate. Thisimpliesthatinthethisstudywecanregardthem late-type stars can be determined from analysis of these lines. (together)asnuisancenecessarytofitbutnotnecessarilygiving Lines that have pressure broadened wings include the Mgi b physicalinsightintothestar. lines at 516.7, 517.2, 518.3nm, the Nai D lines at 588.9 and To test the three methods we adopted ten benchmark stars 589.5nm,andtheCailinesat612.2,616.2,and643.9nm(see, (seeHeiteretal.2015a;Jofréetal.2014,andSect.2.1.1). e.g., Bonnell & Bell 1993; Edvardsson 1988; Fuhrmann et al. 1997). The analysis of the wings of these strong lines require 4.3.1. Method1: FeiandFeiilines that the elemental abundance of the element the line is arising from is also determined, from other lines than the one used to Inthismethodwefitallfreeparameterssimultaneouslybycom- derivelogg. Thismeansthaterrorsinloggandtheabundance paring theobserved spectrum witha synthetic onefor short re- ofthatelementcorrelate. gionsaroundtheFeiandFeiilines. Itshouldbementionedthat Finally, when we have independent measurements of Teff themethodismorecommonlyperformedwithequivalentwidths and metallicity, logg can be derived through isochrone fitting intheliteratures(e.g.,Bensbyetal.2003).Thismethodisspeed- (see,e.g.,Sozzettietal.2007). Wewillnotfurtherexplorethis ier if we start with realistic initial values for stellar parameters methodhere. (seealsoSect.3.2).Forthebenchmarkstars,theirrecommended values are used as the initial input, however, experience shows thattheexactvaluesareunimportanttoachiveconvergence. An 4.3. Determiningstellarparameters initial value for v was obtained using the relation given in mic InSects.4.1and4.2wediscussedvariouswaystodetermineTeff Jofré et al. (2014). The initial vmac value was set to 5.0 km s−1 andlogg. Althoughthisisnotanexhaustivesummary,combin- forallstars. ingthevariouswaystoderiveTeff andloggstillleadstoquitea All parameters are simultaneously fitted inside SME. As fewpossiblecombinations. Herewewillexplorethefollowing SMEstrivestofitalllinesequallywellthisisineffectthesame combinations: asrequiringionizationalandexcitationalequilibrium–hence,all parameters are determined simultaneously. The method differs Method1: InthismethodweonlyuseFeiandFeiilinestocon- slightlyfromitsmostcommonimplementationintheliterature strain all stellar parameters (i.e., excitation and ionizational where an iterative scheme is employed and one parameters is equilibriaareimposed). variedineachstep(see,e.g.,Drake1991;Drake&Smith1991, Method2: In this method we use the Hα line to constrain Teff, anddiscussionstherein). Instead,theusageofSMEinfullyfree thestrongCailinestoconstrainlogg,andFeilinestoderive mode is more akin to the method used in Feltzing et al. (2009) theironabundance. wheretheparameterspaceissearched(byhand)forabestfitto Method3: In this method we use the Hα line to constrain Teff, allcriteriasimultaneously. thestrongCailinestoconstrainlogg,andFeiilinestoderive theironabundance. 4.3.2. Method2: Hα,Ca,andFeilines WhileinMethod1allparametersarecorrelated,Method2and To break the degeneracy between the different parameters we 3aimatbreakingthesedegeneraciesbyusingseparatemeasures use different spectral indicators for each of the main stellar pa- foreachofthethreemainparameters. Wedidnotattempttouse rameters. Thismethodrequiresasetofinitialparameterstoget theMgibandNaiDlinesasthesearetooblendedbytheatomic started. These could be obtained in different ways (e.g., from and molecular lines to determine logg from them in metal-rich photometry). For this test we take the parameters obtained in giant stars as we are interested in here. For cool giants with Method1asinitialinput. Teff < 4400 K, we further found that the wings of the Hα line almost vanished (see also AppendixC). This lead us to modify Method2:Forwarmgiants(Teff >4400K),thefollowingsteps areused: Method2tobeabletoincludealsosuchstarsinourstudy(see Sect.4.3.2). 1. Asetofparametersasinitialinput; InadditiontoTeff,logg,and[Fe/H]aspectroscopicanalysis 2. FitthewingsofHαtoderiveTeff,whiletheotherparameters normally calls for the determination of a few other parameters; arekeptfixed; microturbulance(vmic),marcotublence(vmac),androtationalve- 3. Fit the wings of the three strong Cai lines (λ 612.2, 616.2, locity(vsini). and 643.9nm) to determine logg. To break the degeneracy Microturbulanceandmacroturbulencecaneitherbederived of logg and Ca abundance, several weak Cai lines are also fromthespectrumitselforobtainedfromacalibration,suchas fittedatthesametime; 4. Derive[Fe/H]fromtheFeilinesbysettingbothv andv 4 Inprincipleotherelementscanalsobeused(e.g.,Ti).However,there mic mac free, whilethe otherparametersarekept fixedatthe values areonlyafewelementsthathavelinesarisingfromboththeneutraland singlyionisedvarietyoftheatomthatareobservableintheopticalpart derivedinthestepsabove; ofthespectrum. Inthosecases,oftenoneoftheionshasveryfewor 5. Repeat steps 2 to 4 with updated parameters until all five veryweaklines. parametersreachconvergence. Articlenumber,page6of25 C.Liu etal.:Determinationofrobustmetallicitiesformetal-richredgiantbranchstars 1 0.95 0.9 0.85 x u Fl 0.8 0.75 0.7 0.65 0.04 6556 6558 6560 6562 6564 6566 6568 al 0.02 u d si 0 e R-0.02 -0.04 6556 6558 6560 6562 6564 6566 6568 ˚ Wavelength(A) Fig.4. ComparisonofsyntheticspectrawiththewingsofHαlinein(cid:15)Vir. Themiddlesyntheticspectrum(inred)showsthebestfit. Theother twosyntheticspectra(blueandgreen)indicatetheshapeofthewingswhenTeff ischangedaccordingtoourestimateduncertainty(here50K). Thegrayareasmarktheregionsusedtoevaluatethegoodnessofthefit. Notethatthesearerelativelynarrowsincethespectrumhasverylittle clean"linecontinuum"thankstothecooltemperatureofthestar,whichresultsinmanylinesbeingpresentinthespectrum. Table3.StellarparametersfortheGaiabenchmarkstars. Columns2to4givethereferencevaluesforthestellarparameters. Columns5till11 listourresults,derivedusingMethod2andModifiedMethod2(Sect.4.3.2). Referencevalues ResultsfromMethod2 Name Teff,r loggr [Fe/H]r Teff σTeff logg [Fe/H] σ[Fe/H] Vmic Vmac (K) (dex) (K) (K) (dex) (dex) (kms−1) (kms−1) µLeo 4474 2.51 0.25 4513 100 2.50 0.31 0.08 1.5 4.8 HD107328 4496 2.09 –0.33 4484 50 2.00 –0.48 0.09 1.8 4.4 — — — 4483 50 2.01 –0.45 0.06 1.8 5.4 βGem 4858 2.90 0.13 4846 50 2.89 0.11 0.08 1.2 4.2 (cid:15)Vir 4983 2.77 0.15 5056 50 2.84 0.16 0.08 1.5 5.5 — — — 5055 50 2.80 0.17 0.08 1.5 5.7 ξHya 5044 2.87 0.16 4991 50 2.96 0.10 0.08 1.4 6.1 ResultsfromModifiedMethod2 Arcturus 4286 1.64 –0.52 4305 100 1.69 –0.58 0.09 1.7 5.4 — — — 4321 100 1.63 –0.61 0.09 1.7 5.2 αCet 3796 0.68 –0.45 3888 100 0.72 –0.43 0.12 1.6 8.9 γSge 3807 1.05 –0.17 3988 100 0.96 –0.17 0.09 1.6 6.6 αTau 3927 1.11 –0.37 3910 100 1.12 –0.27 0.11 1.4 5.7 — — — 3930 100 1.10 –0.28 0.10 1.4 6.1 βAra 4197 1.05 –0.05 4250 100 1.03 –0.17 0.08 3.0 10.4 — — — 4277 100 1.26 –0.13 0.08 3.0 9.8 Notes.Thefirstcolumngivesthenameofthestar.Thesecondandthirdcolumnsgivetherecommendedeffectivetemperatureandsurfacegravity obtained from Heiter et al. (2015a), while the recommended metallicity from Jofré et al. (2014) is listed in the column 4. For some stars we havetwospectrafromdifferentinstruments(seedetailsinSect.2.1.1). Thesecondspectrumisindicatedbyadashinthesethreecolumns. The followingsevencolumnsgiveourresults. For step 2 a number of synthetic spectra are generated and Step 5 require us to decide when a given parameter has theirfitisevaluatedusingthespectralregionsindicatedinFig.4. converged. For the current work the following convergence Further examples can be found in the on-line material in Ap- criteria were applied: between two iterations the differences pendixC. should be ∆Teff < 50K for most stars, but for stars with very InStep3thethreestrongCailinesaresimultaneouslyfitted. high S/N-ratios we required < 20K, ∆logg < 0.05dex, and It would be possible to fit them each individually instead. A ∆[Fe/H]<0.05dex. discussionofthemeritsofthedifferentapproachescanbefound intheon-linematerialinAppendixD. Articlenumber,page7of25 Asmentioned,itisnotfeasibletomeasureTeff fromtheHα recommend Method 2 as providing a sound basis for an analy- line for the cooler giants (Teff < 4400 K). Therefore, the only sis of a large sample of stars. It is reassuring that this method optionistoderiveTeff usingFeilines(excitationalequilibrium) notonlygivesgoodmetallicityestimatesbutalsoreliablestellar rather than the wings of the Hα line for these stars. However, parametersingeneral. thisre-introducesadegeneracybetweenTeff and[Fe/H].Weare The uncertainty in Teff can be estimated by inspecting the stillabletousethethreestrongCailinestodeterminelogg. comparison of synthetic spectra with the observed spectrum. ThisisrelativelystraightforwardforthehighS/Nandhighres- ModifiedMethod2: Forcoolgiants(Teff <4400K,thefollow- olutionspectrawehavefortheGaiabenchmarkstars. Wefound ingstepsareused: thatthetypicaluncertaintyinTeff isabout50Kformostofthe 1. Asetofparametersasinitialinput; warmgiants. Oneexample, (cid:15)Vir, isshowninFig.4. Forlogg, 2. FitthewingsofthethreestrongCailines(λ612.22,616.22, we found that for most stars the typical uncertainty is around and643.91nm)todeterminelogg. Tobreakthedegeneracy 0.10dex(seemoredetailsinAppendixD). of logg and Ca abundance, several weak Cai lines are also For [Fe/H] we calculate the error in the mean by using the fittedatthesametime; ironabundancefromeachironlineindiviudally(rememberthat 3. Settingbothv andv freewhilekeepingloggfixed,we the parameters are decoupled in this method). Calculating the mic mac only fit Fei lines to determine Teff and [Fe/H] at the same formal error in the mean we find errors typically around 0.02 time; dex,whilstσisjustbelow0.1dex(seeTable3). 4. Repeat steps 2 to 3 with updated parameters until all five Forthebenchmarkstars,thetypicaluncertaintiesintherec- parametersconverge. ommended Teff and logg are about 60 K and 0.10 dex (Heiter et al. 2015a), respectively. The scatter in Teff and logg around the recommended values for the benchmark stars found in this 4.3.3. Method3: Hα,Ca,andFeiilines studyiscomparablewiththetypicaluncertaintiesoftherecom- SincetheonlydifferencebetweenMethod3andMethod2isthat mendedstellarparameters. Thereisaverysmalloffsetbetween weuseFeiiratherthanFeilines,theatmosphericparametersare therecommended[Fe/H]andourresultswhenusingMethod2. Thetypicaluncertaintyintherecommended[Fe/H]iscompara- measuredmakinguseofthesameiterativeprocessdescribedin Sect.4.3.2bychangingfromFeilinetoFeiilines. bletowhatwefind(<0.02dex,Jofréetal.2014). ForModifiedMethod2wedidmakeuseofexcitationequi- librium using the Fei lines. However, the number of Feii lines 4.5. HowmuchdotheresultsdependontheS/Ninthe available is much fewer than Fei lines and they do not cover a spectra? largeenoughrangeinexcitationpotentialforustotrytodeter- immipnleemTeeffntferdomforewxcairtmatigoinanetqsu(iTliebffri>um4.40M0Ket)h.od 3 is thus only OS/uNrtsepsetsctorfadoifffetrheentmmeetathl-oridcshh,acvoeorlelgiieadntosnitnheGaaniaalybseinscohfmhiagrhk sample. Clearly, astudyofforexampletheGalacticbulgewill havespectraofmuchlowerS/N.Howwillthisinfluencethere- 4.4. Discussionanderrorestimates sults? Weanalysethisintwosteps. Firstlywewilldegradethe spectrafortheGaiabenchmarkstarstomimicthatofhighqual- We now proceed to compare our results for the ten benchmark itydataforstarsintheGalacticbulgeandsecondlywewillmake stars derived using the three methods. A comparison is shown useoftheextensivedatasetofstarsinNGC6528thatwehave inFig.5andthestellarparametersobtainedusingMethod2and ModifiedMethod2arelistedTable3. Inparticularewefind5: collected. TotestthedependenceofourfinalresultsonS/Nandreso- Method1∆Teff =56K(σ=79),∆logg=–0.04(σ=0.20),and lutionwehavedegradedthespectraforthetenbenchmarkstars ∆[Fe/H]=0.03dex(σ=0.11); andre-analysedthem. Wechose45000and20000forthereso- lutionandatthreedifferentS/N(25,35,45). 20000isaresolu- Method2∆Teff =35K(σ=54),∆logg=0.02(σ=0.07),and tionthatiscommonforFLAMES-GIRAFFE(usedintheGaia- ∆[Fe/H]=–0.03dex(σ=0.08); ESO Survey) and the future massively multiplex spectrographs Me∆t[hFoed/H3]∆=T0eff.0=4d1e9xK(σ(σ==0.5034)),(∆wlaorgmg=gia–n0t.0s3on(σly=).0.08),and (2e0.1g4.,,WresEpAeVctEivealnyd).4MOST, Dalton et al. 2014; de Jong et al. Comparingwiththeresultsderivedfromtheoriginalspectra wefoundthat[Fe/H]isweaklyoverestimatedwhenthespectra Of the three methods method 1 clearly performs the least arenoisier, but[Fe/H]doesnotdependontheresolutionofthe well.Itisnoticeablethatthescatterinallthreestellarparameters spectrum. It should be noted that we did not investigate if the arequiteabithigherforthismethodthanfortheothertwo. The offsetsarealsosomewhatlarger. FromFig.5weseethatthere abundances of other elements were unaffected. The iron lines isnoparticulartrendin∆Teff,∆logg,and∆[Fe/H]asafunction wanealuyssee,arfeorcaortehfeurlelylesmeleencttsedthtiosmbeaythneoctlebaentersutea.ndmosteasyto ofTeff. Thisisreassuringasitindicatesthatourmethodsdonot havehiddentrendsinthemandthattheestimatedscatterscanbe trusted. 5. ApplyingouranalysistostarsinNGC6528 Method3suffersfromtheshortcomingthatitcannotbeap- pliedtocoolergiants(Teff <4400K).Thisisaseverelimitation 5.1. StellarparametersforNGC6528stars forthestudyofglobularclustersandfieldgiantsintheGalactic bulge. Tostudythemetallicitydistributions,wewouldtherefore Initial Teff for the stars were calculated using the colour-Teff- [Fe/H] relation from González Hernández & Bonifacio (2009). 5 FortheseestimatesweexcludedthestarHD107328asthe[Fe/H]for Aswecouldnotobtainphotometricdataintheopticalforallour thatstarisverydifferent,andwedonothaveastraightforwardanswer stars,thedereddenedJ−Kscolourisusedtocalculatetheinitial tothisdiscrepancy. estimateofTeff. Followingpreviousstudiesofthemetallicityof Articlenumber,page8of25 C.Liu etal.:Determinationofrobustmetallicitiesformetal-richredgiantbranchstars 200 0.2 150 0 H]r −Tffe,r 10500 −[Fe/-0.2 Tffe,x 0 /H]x-0.4 Fe -50 [-0.6 -100 -0.8 3600 3800 4000 4200 4400 4600 4800 5000 5200 3600 3800 4000 4200 4400 4600 4800 5000 5200 Teff,r Teff,r Method 1 Method 2 Method 3 0.2 0 αCet Teff,r=3796K ggr-0.2 µγSLgeeo TTeeffff,,rr==34840774KK −lo-0.4 HD107328 Teff,r=4496K ggx-0.6 αβGTaeum TTeeffff,,rr==34982578KK lo-0.8 βAra Teff,r=4197K -1 ǫVir Teff,r=4983K Arcturus Teff,r=4286K -1.32600 3800 4000 4200 4400 4600 4800 5000 5200 ξHya Teff,r=5044K Teff,r Fig.5. ComparisonofthestellarparametersderivedusingthethreemethodsdiscussedinSects.4.3.1till4.3.3withthereferencevalues(Table3). Oneachy−-axisisindicatedthedifferencebetweenthevalueswehaveobtainedandthereferencevalue(indicatedbyasubscript"r"). Method 1isindicatedbyredsymbols, Method2byblack, andMethod3isindicatedbycyansymbols. Differentsymbolsrepresentthedifferentstars (asindicatedinthefigure, notethateachsymbolrepresenttwostars.TheyshouldbeeasytoidentifythankstotheirdifferentTeff ). Notethat somestarshavemorethanonespectrumanalysed(seeSect.2.1.1). ThestarscanbeidentifiedbytheirrecommendedTeff whichisplottedonthe x-axis.Thedashedlineindicatestheseparationof"cool"(left)and"warm"(right)giants(seeSect.4.3.2). NGC6528(e.g.,Zoccalietal.2004),weset[Fe/H]=–0.10dex 0.25 astheinitialvaluefortheanalysisforallstars.Sincemostofour starsareeitherhorizontalbranchorredclumpstars,wesimply 0.2 2σ set the initial logg to 2.5dex for warm giants (Teff ≥ 4400 K) and 2.0dex for the cooler. For the analysis we used Method 2 0.15 andModifiedMethod2,asdesribedinSect.4.3.2. H]r 0.1 Inspectingthespectrumofstar1-24,wefoundthatmostof / e the lines are asymmetric. Zoccali et al. (2004) found that this F 0.05 1σ [ − star likely is a binary. Our inspection of the spectrum supports x 0 thisconclusion. Thestarwasremovedfromoursample. H] / For stars 61, 66, 68, and 84 we were unable to analyse the e-0.05 F spectraastheyallhavelowS/Nandinadditionthespectraap- [ -0.1 pear to have several unexpected features. These stars were ex- cludedfromtheanalysis. -0.15 This leaves us with 29 stars successfully analysed. The re- -0.2 sultsarelistedinTable4. Eightofthesestarsarenotradialve- 10 20 30 40 50 60 locitymembersofNGC6528(seeSect.2.3). S/N Fig.6. Thedifferencebetween[Fe/H]derivedfromspectraofvary- 5.2. AnalysisofasuiteoflowS/Nspectraforstarsin ingS/N(perpixel)forstarsinNGC6528. [Fe/H]x indicatesourvalue NGC6528 measuredforeachspectrum,while[Fe/H]r indicatethevalueobtained in Sect. 5.1 for each star. The full line indicated the average differ- ForseveralofthestarsinNGC6528wehavemultipleexposures. enceevaluatedasarunningaverage. Theshadedregionindicatesthe This allows us to analyse spectra of different S/N for the same 1σdifference,whilethedashed-dottedlineindicatesthe2σdifference. star. Using Method 2 and Modified Method 2 we analysed the DetailsonindividualstarsaregiveninonlinematerialinAppendixE. Notethatinthisfigurewedonotdistinguishbetweenstarsforwhich actual observed spectra of five stars (star-05, -07, -62, -65 and -67,IDsasinTable2). differentmethodstoderiveTeff havebeenused(compareFig.7). Twooftheclusterstars(-62and-71)havealargenumberof spectraallowingustostudytheresultsinamorestatisticalway. For reference value we use the final parameters determined for We find that the scatter, for a given star and for the whole eachstaraslistedinTable4. sample,increasesaswegotospectrawithlowerandlowerS/N. Articlenumber,page9of25 Table4.StellarparametersforthesamplestarsderivedusingMethod2. # Object Teff σTeff loggσlogg[Fe/H]σ[Fe/H] Vmic VmacMember (K) (K) (kms−1)(kms−1) (01) 01 4550 100 2.78 0.02 0.40 0.12 1.8 4.2 N (02) 02 6042 50 4.51 0.05 0.03 0.04 1.1 8.2 N (03) 03 4029 100 1.23 0.15 –0.15 0.12 1.5 5.3 Y (04) 04 4304 100 1.52 0.15 0.04 0.11 1.4 5.3 Y (05) 05 4277 100 1.95 0.11 0.01 0.10 1.5 4.5 Y (06) 06 4623 100 1.98 0.08 –0.04 0.14 1.9 6.8 Y (07) 07 4776 100 2.50 0.09 0.03 0.08 1.7 6.1 Y (08) 1-02 4258 100 1.67 0.12 0.05 0.09 1.3 9.8 Y (09) 1-16 4640 100 2.56 0.14 –0.02 0.09 1.5 7.1 Y (11) 1-36 4337 100 2.14 0.08 –0.08 0.11 1.7 4.8 Y (12) 1-42 4125 100 1.39 0.19 0.09 0.14 0.8 7.8 Y (13) 60 4289 100 2.08 0.09 –0.07 0.08 1.7 6.2 Y (15) 62 3967 100 1.89 0.10 –0.08 0.11 1.8 7.1 Y (16) 63 3977 100 1.45 0.07 –0.15 0.09 1.8 7.0 Y (17) 64 4079 100 1.94 0.15 –0.07 0.12 1.7 5.6 Y (18) 65 4289 100 2.28 0.08 –0.09 0.12 1.9 6.5 Y (21) 69 4044 100 1.65 0.08 –0.17 0.12 1.7 6.2 Y (22) 70 4123 100 2.12 0.12 0.09 0.20 1.1 7.3 Y (23) 71 4560 150 2.64 0.04 0.11 0.08 1.9 7.7 Y (24) 72 4506 150 2.55 0.04 0.26 0.13 2.2 6.7 N (25) 73 4702 100 2.62 0.20 –0.02 0.10 2.4 10.9 Y (26) 75 4153 100 2.00 0.13 0.01 0.10 1.7 4.8 N (27) 76 4569 150 2.74 0.22 0.43 0.13 2.1 5.4 N (28) 80 4451 100 2.51 0.05 0.19 0.14 1.7 6.4 Y (29) 82 4521 100 2.34 0.17 0.40 0.12 2.0 5.2 N (30) 83 4883 100 2.48 0.21 –0.48 0.07 1.7 5.6 N (32) 86 3650 150 1.15 0.38 0.03 0.34 1.7 10.0 N (33) 3014 4797 100 2.21 0.10 0.21 0.11 1.4 6.7 Y (34) 3025 4877 100 2.02 0.15 0.14 0.09 1.7 15.8 Y Notes. Columnonegivesthe#fromTable2inAppendixA,whicharealsousedintheFindingChartinthesameappendix. Columntwothe original IDs, Columns three to eight lists the derived parameters and their associated errors. Columns nine and ten list the micro and macro turbulences,respectively."Y"and"N"inthelastcolumnindicateifthestarisaradialvelocitymemberofNGC6528ornot. This is not a new finding, but it is here quantified in detail for, Table 5. Metallicity estimates for NGC6528 using different samples. The two first lines in the table gibes the results using Method 2 and what we believe, is the first time for evolved, metal-rich giant stars. AlthoughthescatterincreasesaswegotolowerS/Nthe Modified Method 2 together to analyse the whole sample. The line markedrecalibratedpresentsourfinalresult. Belowthis, wegivethe meanvalueofthemeasurementsmoreorlessreproducestheref- resultsifthesampleissplitaccordingtowhichmethodisusedtoanal- erencevalue. AtthelowestS/Nwefindapositiveoffset(Fig.6). ysethespectra. Further details are available in the online material in Ap- pendixE. S/N Nstars <[Fe/H]> σ Error All 21 0.00 0.10 0.02 >35 13 –0.03 0.08 0.02 Recalibrated >35 13 0.04 0.07 0.02 5.3. Discussion: DoMethod2andModifiedMethod2 producecomparableresults? Method2 All 8 0.07 0.10 0.03 >35 3 0.04 0.06 0.03 Unfortunately, theanswertothequestionposedintheheadline ModifiedMethod2 All 13 –0.04 0.09 0.02 >35 10 –0.05 0.08 0.02 of this section is – no. This should perhaps not come as a sur- prise, butgiventheresultsinSect.4.4wewouldhaveexpected Notes.The first column indicates which methods are included in the thattheresultswouldberelativelysimilarandno(obvious)sys- average,thesecondcolumnindicatesifallS/Nareincludedorifthere tematicdifferencespresent. Thisis,however,notthecase. isacut-off, thethirdcolumngivesthenumberofstarsinthesample, Figure7 shows the cumulative distributions of [Fe/H] for thefifthcolumnliststheaverage[Fe/H],while√columnssixandseven liststheassociatedσanderror-in-the-mean(σ/ N ). stars that are radial velocity members of NGC6528. We plot stars the distribution for all stars, but also for stars analysed using Method2andModifiedMethod2,respectively. Table5liststhe numberofstarsineachsub-sampleandtheaverage[Fe/H].Stars analysedonlystarswithS/N>35.Althoughthisresultsinrather analysedusingMethod2areabout0.1dexmoremetal-richthan smallsamplestheend-resultremains(Fig.7b). starsanalysedwithModifiedMethod2. Themedianissimilarly We also note that when selecting only stars with S/N > 35 off-set. TocheckthatthisresultdoesnotdependonS/Nwealso the full sample as well as the two sub-samples all give a lower Articlenumber,page10of25

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.