Determination of Material Properties for ANSYS Progressive Damage Analysis of Laminated Composites EverJ.Barberoa,MehdiShahbazib,c aCorrespondingauthor.WestVirginiaUniversity,Morgantown,WV,USA bGraduateresearchassistant.WestVirginiaUniversity,Morgantown,WV,USA cFinalpublicationavailableathttps:/doi.org/10.1016/j.compstruct.2017.05.074 Abstract A method is presented to calculate the material parameters required by the progressive damage analysis (PDA)material-modelinANSYS(cid:13)R. TheproposedmethodisbasedonfittingresultscalculatedwithPDA to experimental data by using Design of Experiments and Direct Optimization. The method uses experi- mentalmodulus-reductionvs. straindataforonlytwolaminatestofitalltheparametersrequiredbyPDA transverse/sheardamagemode. Fittedparametersarethenusedtopredictandcomparewiththeexperimen- talresponseofotherlaminates.MeshsensitivityofPDAisstudiedbyperformingp-andh-meshrefinement. PDAcanthenbeusedtopredicttheresponsewithdamageevolutionofanylayup. Keywords: ANSYS;Matrixdamage;Parameteridentification;Damagemodel;Damageparameters; Insitu;Fracture. 1. Introduction Damage initiation and propagation in composite materials are of particular importance for the design, production,certification,andmonitoringofanincreasinglylargevarietyofstructures. Whilemostmodels areimplementedonshell-typeformulations,someareimplementedonsolid-typefiniteelementformulations [1]. One approach is to predict the response of each lamina using a meso-model that couples the behavior ofeachlaminawithadjacentinterlaminarlayers[2]. Anintralaminardamagemodeltakesintoaccountthe effects of transverse matrix crack and the interlaminar layer takes into account delaminations. Parameter identificationandvalidationwithopen-holetensiletestsonquasi-isotropiclaminatesisdescribedin[3]. Another approach is to use serial-parallel mixing theory [4, 5, 6], or multi-continuum theory (MCT) [7],tosimulatetheonsetandpropagationoftransversematrixcrackingandotherfailuremechanisms. The composite response is obtained from the constitutive behavior of its constituents, each one of them simu- lated with its own constitutive law. In this way, it is possible to use any given non-linear material model, suchasdamageorplasticity,tocharacterizetheconstituents. Theaccuracyofdamageonsetandevolution predictionsdependsontheaccuracyoftheconstituentmodelsused. Most of the models developed specifically to address the phenomenon of transverse matrix cracking are meso-models, meaning that each lamina is considered to be a homogeneous, orthotropic material [8]. Somemodels,suchasProgressiveDamageAnalysis(PDA)usestrengthpropertiestopredictdamageonset, and fracture mechanics properties to predict damage evolution [9, 10]. Others, such as Discrete Damage Mechanics(DDM)[11]useonlyfracturemechanicspropertiestopredictbothdamageinitiationanddamage evolution. PreprintsubmittedtoCompositeStructures176:768–779(2017).DOI:10.1016/j.compstruct.2017.05.074 March27,2018 CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 2 Regardless of how initiation is predicted, evolution is commonly predicted by establishing a relation betweentheavailablestrainenergyinthematerialandthedensityofmatrixcracks[12,13,14,15,16]. For example, [17] uses Finite Fracture Mechanics (FFM) to obtain the energy release rate required to double thecrackdensity,bypropagationofanewcrackbetweentwoexistingcracks,orbycontinuousvariationof crackdensity[18]. Similarly,theequivalentconstrainedmodel(ECM)[19,20],definesalawthatprovides theevolutionofstiffnessasafunctionofmatrixcrackdensity. Regardingthesolutionofthestressandstrainfieldinthevicinityofacrack,whichisnecessarytocalcu- latethestrainenergyreleaserate(ERR),mostmodelsapproximatetheproblemasbeingperiodic. However, numerical models such as PDA are not constrained by this assumption. While most models calculate the ERR using the equations of elasticity, with various degrees of approximation, others use Crack Opening Displacementapproximations[14,16,21]. Someoftheabovementionedformulationsprovideanalyticalexpressionsthatcanbeusedtoobtainthe mechanicalresponseforsimplegeometryandloadconfigurations. However,itisoftennecessarytoinclude the constitutive model into Finite Element Analysis (FEA) software. Some models have been included in commercialFEAsoftware[9,10,22]. OthersareavailableaspluginsforexistingFEAsoftware[7,23],or asuserprogrammablefeatures,includingUMAT,UGENS,UserMAT[24],andVUMAT[1]. ANSYSMechanicalprovidesprogressivedamageanalysis(PDA)startingwithrelease15. Furthermore, ANSYS Workbench allows optimization of any set of variables to any user defined objective defined in a Mechanical APDL (MAPDL) model by importing the APDL script into Workbench and using Design of Experiments (DoE) and Direct Optimization (DO). Since PDA is not implemented in the graphical user interface(GUI)ofANSYSWorkbench,theusermustuseAPDLcommandstodefinethedamageinitiation criterion,damageevolutionlaw,andmaterialparameters,asdescribedinthismanuscript. Althoughelasticmoduliareavailableformanycompositematerialsystems,thesameisnottrueforthe additionalmaterialpropertiesrequiredbyPDA.However,laminatemodulusandPoisson’sratiodegradation oflaminatedcompositesasafunctionofappliedstrainareavailableforseveralmaterialsystems,forexample [21,25,26]. ThisstudyshowshowtouseavailabledatatoinferthematerialparametersrequiredbyPDA. Specifically, the main purpose of this study is to find in situ values [27] of transverse tensile strength F , 2t in-planeshearstrength F ,andenergydissipationperunitareaG (transversetensile/shearmode)forthe 6 c materialsystem(compositelamina)whichcanbeusedinPDAtopredictdamageinitiationandevolutionof laminatedcompositestructuresbuiltwiththesamematerialsystembutdifferentlaminatestackingsequence (LSS),geometry,loads,andboundaryconditions. Experimentaldatafrom[21,25]isusedforillustrationin thisstudy. The proposed method requires experimental data in the form of laminate extensional modulus E re- x duction(orlaminateshearmodulusG reduction,orlaminatePoisson’sratioν reduction)vs. damagefor xy xy two laminates. One laminate should have a significant component of mode I (opening) crack propagation andtheotherasignificantcomponentofmodeII(shear)crackpropagation,suchasforexample[0/90] and S [0/±θ] ,respectively. Extensionalmodulusreductiontestsaretheeasiesttoperformbuttheusercoulduse S laminateshearorPoisson’sratioreductionaswell. ThestatedobjectiveisachievedbyminimizingtheerrorbetweenPDApredictionsandavailableexperi- mentaldata.OncetheinputparametersF ,F ,G arefound,theaccuracyofPDApredictionsischeckedby 2t 6 c comparingthosepredictionswithexperimentaldataforotherlaminatesthathasnotbeenusedtofittheinput parameters. Infact, experimentaldataforonlytwolaminatesarerequiredtofittheparameters. Theinput parameters are fitted using an specific mesh (one element) and type of element (SHELL 181). However, severaltypesofelementsandvariablemeshrefinementarecustomarilyusedfortheanalysisofacomplex structure. Therefore, sensitivity of the PDA predictions with respect to mesh refinement and element type (quadraticvs. linear)isassessedinthisworkbyperformingbothp-andh-refinement. CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 3 2. ProgressiveDamageAnalysis Toperformprogressivedamageanalysisofcompositematerials,theuserneedstoprovidelinearelastic orthotropicmaterialpropertiesandtwomaterialmodels: damageinitiationanddamageevolutionlaw. 2.1. DamageInitiationCriteria WithdamageinitiationcriteriatheusercandefinehowPDAcalculatestheonset(initiation)ofmaterial damage. TheavailableinitiationcriteriainANSYSareMaximumStrain,MaximumStress,Hashin,Puck, LaRC03,andLaRC04. Besides,theusercandefineuptonineadditionalcriteriaasuserdefinedinitiation criteria, but only the Hashin criterion works with PDA. The remaining only work with instant stiffness reduction(MPDG).Thelaterissimilartoply-dropoffbuttheamountofstiffnessdropcanbespecifiedin therange0–100%oftheundamagedstiffness.WithMPDG,theusercanchoosefailurecriteriaamongthose mentionedforeachofthedamagemodes,whichareassumedtobeuncoupled. Using the Hashin initiation criteria [28], PDA incorporates the following four modes of damage initi- ation: fiber tension, fiber compression, matrix tension, and matrix compression, which are represented by damageinitiationindexesI ,I ,I andI thatindicatewhetheradamageinitiationcriterioninadamage ft fc mt mc modehasbeensatisfiedornot. Damageinitiationoccurswhenanyoftheindexesexceeds1.0. Damage initiation indexes are unfortunately called “failure” indexes in the literature, despite the fact that,foraproperlydesignedlaminate,usuallynocatastrophic“failure”occursatthatpointbutratheronlya smallamountofdamageappears[29,30,31]. Thefourdamageinitiationindexesaredescribednext. 2.1.1. Fibertension(σ ≥0) 11 Fibertensionisamisnomersometimesusedintheliterature,sincethismodeactuallyrepresentslongitu- dinaltensionofthecompositelamina,notthefiber. Thecorrespondingdamageinitiationindexiscomputed asfollows (cid:18)σ (cid:19)2 (cid:18)σ (cid:19)2 It = 11 +α 12 (1) f F F 1t 6 whereαdeterminesthecontributionofthein-planeshearstresstothiscriterion. 2.1.2. FiberCompression(σ <0) 11 Thedamageinitiationindexforlongitudinalcompressionofthecompositelaminaiscomputedasfol- lows (cid:18)σ (cid:19)2 Ic = 11 (2) f F 1c 2.1.3. Matrixtension(σ ≥0) 22 Thisisalsomisnomer,sincethismodeactuallyrepresentstransversetensionandin-planeshearofthe compositelamina,notthematrix. Theconfusionisduetothefactthatthisisamatrix-dominatedmode,but still the criterion is applied at the meso-scale; that is at the lamina level, not at the micro-scale where the fiberandmatrixwouldbeanalyzedseparately. Furthermore,theparametersinvolved(F ,F )arethoseof 2t 6 alamina,notoffiberandmatrixseparately,andtheresultingindexappliestothelamina,nottothematrix (cid:18)σ (cid:19)2 (cid:18)σ (cid:19)2 It = 22 + 12 (3) m F F 2t 6 CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 4 2.1.4. Matrixcompression(σ <0) 22 Thedamageinitiationindexfortransversecompressionofthecompositelaminaiscomputedasfollows (cid:18)σ (cid:19)2 (cid:20)(cid:18)F (cid:19)2 (cid:21)σ (cid:18)σ (cid:19)2 Ic = 22 + 2c −1 22 + 12 (4) m 2F 2F F F 4 4 2c 6 whereσ arethecomponentsofthestresstensor; F and F arethetensileandcompressivestrengthsof ij 1t 1c a lamina in the longitudinal (fiber) direction; F and F are the tensile and compressive strengths in the 2t 2c transversedirection;F andF arethein-planeandintralaminarshearstrengths. 6 4 In this work, to obtain the model proposed by Hashin and Rotem [28], in (1) we set α = 0 and in (4) F =1/2F . Alsonotethatinsitustrengthshouldbeusedforallmatrix-dominatedmodes[32]. 4 2c The APDL command for Hashin initiation criteria for all damage modes is TB, DMGI, as it is shown below: ! Damage detection using failure criteria TB, DMGI, 1, 1, 4, FCRT TBTEMP,0 ! 4 is the value for selecting Hashin criteria, ! which is here selected for all four failure modes TBDATA,1,4,4,4,4 2.2. MaterialStrengthLimits Toevaluatethedamageinitiationcriteria,theuserdefinesthemaximumstressesorstrainsthatamaterial cantoleratebeforedamageoccurs. Requiredinputsdependonthechosencriteriainthedamageinitiation part. Forinstance,forHashincriteriatheuserneedstodefineinsitutensileandcompressionstrengthin1, 2,and3laminaorientations(calledX,Y,andZdirectionsinANSYS),andtheshearstrengthin12,13,and 23laminaplanes(calledXY,XZ,andYZinANSYS). Sincefiberdominatedstrengthvaluesareatleastoneorderofmagnitude(10X)largerthanmatrixdomi- natedstrengths,matrixmodesoccurmuchearlierinthelifeofthestructurethanfibermodes. Forproperly designedlaminates(e.g.,accordingtothe10%ruleandotherindustry-acceptedpractices[33])fibermodes (§2.1.1, §2.1.2) do not occur until nearly the end of the life. Furthermore, transverse matrix compression (§2.1.4) does not result in progressive damage but rather leads to sudden failure according to the Mohr- Coulomb criterion [34]. Therefore, this study focuses on matrix tension and shear modes (§2.1.3), which areknowntoleadtosubstantialprogressivedamage[25,21]. InitialvaluesofinsitutransversetensilestrengthF ,insituin-planeshearstrengthF ,andintralaminar 2t 6 shearstrengthF (calledXT,XY,andXZinANSYS)shouldbedefinedintheAPDLscript. Thecommand 4 formaterialstrengthlimitisTB,FCLI,asshownbelow: ! Material Strengths TB,FCLI,1,1,6 TBTEMP,0 ! Failure Stress, Fiber Tension TBDATA,1, F 1t ! Failure Stress, Fiber Compression TBDATA,2,F 1c ! Toughness Stress, Matrix Tension TBDATA,3,F 2t CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 5 ! Failure Stress, Matrix Compression TBDATA,4,F 2c ! Failure Stress, XY Shear TBDATA,7,F 6 ! Failure Stress, YZ Shear TBDATA,8,F 4 As it was previously stated, the damage initiation part of PDA requires six material parameters listed above. Twoofthose,F andF ,areinsituvalues. Insituvaluescanbecalculatedusingequationsthatin- 2t 6 volvethenominalstrengthsoftheunidirectionallaminaandthecorrespondingcriticalenergyreleaserates (ERRs)G ,G inmodesIandII[34],orthetransitionthicknessofthematerial[33,§7.2.4],[35]. Howe- Ic IIc ver, thesecriticalERRsandtransitionthicknessesarenotusuallyavailableintheliterature. Experimental methodstodetermineinsituvaluesarenotavailableeither.Byfocusingononedamagemode,namelytrans- versetension/sheardamage(§2.1.3),itisshowninthisworkthatthematerialparametersrequiredbyPDA (F ,F ,andG ) can beobtained by fitting PDA modelresults to suitable experimental data. Thus, critical 2t 6 c ERRs, transition thicknesses, and in situ strength values, which are not available in the literature and are verydifficulttodetermineexperimentally,canbesimplyobtainedwiththemethodologyproposedherein. 2.3. DamageEvolution After satisfying the selected initiation criteria, further loading will degrade the material. The damage evolutionlawdetermineshowthematerialdegrades. InANSYS,therearetwooptionsfordamageevolu- tion: instant stiffness reduction (MPDG) and continuum damage mechanics (PDA). Since instant stiffness reduction,whichissuddenlyappliedwhenthecriterionissatisfied,doesnotprovideanyinformationabout damageevolution,thisstudyusesthePDAmethodfordamageevolution. PDA damage evolution requires eight parameters: four values of energy dissipated per unit area (G , c Figure1)andfourviscositydampingcoefficients(η)fortensionandcompressioninbothfiberandmatrix dominatedmodes. Theenergydissipatedperunitareaisdefinedas: Figure1:Equivalentstressσevs.equivalentdisplacementue. (cid:90) uu e G = σ du (5) e e 0 CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 6 where: σ =istheequivalentstress.Forsimpleuniaxialstressstate,theequivalentstressistheactualstress.For e complexstressstate,theequivalentstressesandstrainsarecalculatedbasedonHashin’sdamageinitiation criteria. u =istheequivalentdisplacement. Forsimpleuniaxialstateofstressandstrain,u = (cid:15) L ,with(cid:15) is e e e c e theuniaxialstrainandL isthelengthoftheelementinthestressdirection. Forcomplexstatesofstrain,(cid:15) c e istheequivalentstrainandL isthecharacteristiclengthoftheelement. c uu =istheultimateequivalentdisplacement,wheretotalmaterialstiffnessislostforthespecificmode. e L isthecharacteristiclength. For2Delements(PLANEandSHELL),itisinternallydefinedinterms c oftheareaA oftheelement,asfollows[36]: e (cid:112) Lc=1.12 A ;forsquareelements e (cid:112) Lc=1.52 A ;fortriangularelements (6) e Viscous damping coefficients η are also specified respectively for each of the damage modes. For a specificdamagemode,thedamageevolutionisinternallyregularizedasfollows: η ∆t dt(cid:48)+∆t = η+∆t dt(cid:48)+ η+∆t dt+∆t (7) where: d(cid:48) =Regularizeddamagevariableatcurrenttime. t+∆t dt+∆t isusedformaterialdegradation d(cid:48) =Regularizeddamagevariableatprevioustime. t dt+∆t =Un-regularizedcurrentdamagevariable Thedampingcoefficientsmayneedtobeadjustedifconvergenceproblemsareencountered,butallthe casesinthisworkexecutedflawlesslybyjustusingthedefaultvaluesthatarebuiltintoANSYS. ThecommandfordefiningdamageevolutioninAPDLisTB,DMGE,asshownbelow. ! Damage Evolution with CDM Method TB,DMGE,1,1,8,CDM TBTEMP,0 ! Fracture Toughness, Fiber Tensile TBDATA,1,Gft c ! Viscosity Damping Coefficient, Fiber Tensile TBDATA,2, ηft ! Fracture Toughness, Fiber Compressive TBDATA,3,Gfc1E6 c ! Viscosity Damping Coefficient, Fiber Compressive TBDATA,4, ηfc ! Fracture Toughness, Matrix Tensile TBDATA,5,G c ! Viscosity Damping Coefficient, Matrix Tensile TBDATA,6, ηmt ! Fracture Toughness, Matrix Compressive CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 7 TBDATA,7,Gmc c ! Viscosity Damping Coefficient, Matrix Compressive TBDATA,8, ηmc 3. Methodology InthissectionweproposeamethodologyusingDesignofExperiments(DoE)andDesignOptimization (DO) to adjust the values of F , F , andG , so that the PDA prediction closely approximates the experi- 2t 6 c mentaldata. FirstweuseDoEtoidentifythelaminatesthataremostsensitivetoeachparameter. Thefocusatthis pointistoidentifytheminimumnumberofexperimentsthatareneededtoadjusttheparameters.Inthisway, additional experiments conducted with different laminate stacking sequences (LSS) are not used to adjust parametersbuttoassesthequalityofthepredictions. In principle, the DoE technique is used to find the location of sampling points in a way that the space of random input parameters X = {F ,F ,G } is explored in the most efficient way and that the output 2t 6 c functionDcanbeobtainedwiththeminimumnumberofsamplingpoints. Inthisstudytheoutputfunction (also called objective function) is the error between the predictions and the experimental data. Given N experimentalvaluesoflaminatemodulusE((cid:15)),theerrorisdefinedas i 1 (cid:118)(cid:117)(cid:116)(cid:88)N (cid:32)E(cid:12)(cid:12)ANSYS−PDA E(cid:12)(cid:12)Experimental(cid:33)2 D= (cid:12)(cid:12) − (cid:12)(cid:12) (8) N i=1 E(cid:101)(cid:12)(cid:15)=(cid:15)i E(cid:101)(cid:12)(cid:15)=(cid:15)i where (cid:15) is the strain applied to the laminate, and i = 1...N. Furthermore, E and E(cid:101)are laminate elastic modulus for damaged and undamaged laminate, respectively, and N is the number of experimental data pointsavailable. DoEtoolscanbefoundinANSYSWorkbenchintheDesignExplorer(DE)module,whichincludesalso DirectOptimization(DO),ParametersCorrelation,ResponseSurface(RS),ResponseSurfaceOptimization (RSO),andSixSigmaAnalysis. Let’s denote the input parameters by the array X = {F ,F ,G }. In this case, the output function 2t 6 c D = D(X) can be calculated by evaluation of eq. (8) through execution of the finite element analysis (FEA)codeforN valuesofstrain. EachFEAanalysisiscontrolledbytheAPDLscript,whichcallsforthe evaluationofthenon-linearresponseofthedamaginglaminateforeachvalueofstrain,withparametersX. Ifthemeshisrefined,theseevaluationscouldbecomputationallyintensive. Analternativetodirectevaluationoftheoutputfunctionistoapproximateitwithamultivariatequadratic polynomial. Theapproximationiscalledresponsesurface(RS).Itcanbeconstructedwithonlyfewactual evaluationsoftheoutputbychoosingasmallnumberofsamplingpointsfortheinput. Thesamplingpoints arechosenusingDesignofExperiments(DoE)theory. Thenumberofevaluationsneededtoconstructthe responsesurface(RS)andfordirectoptimization(DO)areshowninTable1. TheshapeoftheresponsesurfacecanbeinferredbyobservingthevariationoftheoutputDasafunction ofoneinputatatime. ThisisshowninFigures2,3,and4,forlaminate#1(Table2). Theabscissaspans eachoftheinputsandtheordinatemeasurestheerror(8)betweenpredictedandexperimentaldata. ByobservingtheRSwecanunderstandwhichparameters(inputs)havemosteffectontheerror(output). FromFigure4itisclearthattheerrorisnotsensitiveto F forlaminate#1. Thisisbecausenolaminain 6 laminate#1issubjecttoshear.Therefore,itisdecidedtousetheexperimentaldataoflaminate#1toevaluate CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 8 Table1: NumberofFEAevaluationsused(a)toconstructtheresponsesurface(RS)and(b)toadjusttheinputparametersbydirect optimization(DO). #ofevaluations #ofinputs Inputs RS DO(screening) 1 F 5 100 6 2 F ,G 9 100 6 c 3 F ,F ,G 15 100 2t 6 c Figure2:Responsesurfacechart.Error(D)vs.F2t. Figure3:Responsesurfacechart.Error(D)vs.Gc. CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 9 Figure4:Responsesurfacechart.Error(D)vs.F6. Table2:Laminatestackingsequenceforalllaminatesforwhichexperimentaldataisavailable[21,25]. Laminate# LSS 1 [0 /90 ] 2 4 S 2 [±15/90 ] 4 S 3 [±30/90 ] 4 S 4 [±40/90 ] 4 S 5 [0/90 /0 ] 8 1/2 S 6 [0/±70 /0 ] 4 1/2 S 7 [0/±55 /0 ] 4 1/2 S 8 [0/±40 /0 ] 4 1/2 S 9 [0/±25 /0 ] 4 1/2 S CompositeStructures176:768–779(2017) DOI:10.1016/j.compstruct.2017.05.074 10 Table3:SensitivityS oftheoutput(error)toeachinput(parameter). Inputrange ErrorD Sensitivity Laminate Input min max min(D) max(D) ave(D) S # F 72 88 0.0022 0.0041 0.00297 0.64 #1 2t G 22.5 27.5 0.0031 0.0020 0.0026 -0.42 #8 c F 50 88 0.076 0.102 0.093 -0.28 #8 6 onlytwoinputparameters(F andG ). Thismakestheoptimizationalgorithmtorunfaster. Thechartsin 2t c Figures2–4aredrawnfortheinputrangesgiveninTable3. The RS is a multivariate quadratic polynomial that approximates the actual output function D(X) as a functionoftheinputvariables. Inthisstudy,D = f(X). ThesensitivityS oftheoutputtoinputX inthe RS i userspecifiedinterval[X ,X ]iscalculatedas min max max(D)−min(D) S = (9) average(D) andtabulatedinTable3. Notethatthesensitivitycanbecalculatedfromtheerrorevaluateddirectlyfrom FEAanalysis(DO)orfromResponseSurface(RS).Thelaterismuchmoreexpedientthantheformer,asit canbeseeninTable1,consideringthenumberofevaluationsneeded. The input parameters can be adjusted with any mesh and any type of elements that represent the gage section of the specimen, or a single element to represent a single material point of the specimen. For expediency,asinglelinearelement(SHELL181)isusedinthisstudy. 3.1. APDL ANSYSParametricDesignLanguage(APDL)[24]mustbeusedinordertopredictdamagewithPDA [36]. In this study, we need three input parameters: F ,F ,G and one output parameter: D. In APDL, 2t 6 c parametersaredefineddynamically,justbygivingthemanameandvalue,asfollows: /TITLE, Laminate #1: [0-2/90-4]s /UNITS,MPA ! Units are in mm, MPa, and Newtons /PREP7 F2t = 80.0 ! MPa F6 = 48.0 ! MPa Gc = 25.0 ! kJ/m^2 Next, APDL commands are used to specify the element type, the laminate stacking sequence (LSS) with SECDATA command (Table 2), the elastic properties with MP command (Table 4), and the material strengths with TB command (Table 4). The material strengths values given above for F ,F , are simply 2t 6 initial(guess)valuesfortheoptimization. ET,1,SHELL181 ! Element type ! LAMINATE STACKING SEQUENCE SECTYPE,1,SHELL,,#1 ! SECTYPE, SEID, TYPE, SUBTYPE, NAME SECDATA,0.288,1,0 ! thickness, material, angle SECDATA,1.152,1,90 SECDATA,0.288,1,0 ! ORTHOTROPIC MATERIAL PROPERTIES
Description: