ebook img

Determination of Hydro-Mechanical Characteristics of Biodegradable Waste PDF

354 Pages·2016·13.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Determination of Hydro-Mechanical Characteristics of Biodegradable Waste

Determination of Hydro-Mechanical Characteristics of Biodegradable Waste- Laboratory and Landfill Site Kiran Nousheen Arif To cite this version: Kiran Nousheen Arif. Determination of Hydro-Mechanical Characteristics of Biodegradable Waste- Laboratory and Landfill Site. Earth Sciences. Universit´e Joseph-Fourier - Grenoble I, 2010. English. <tel-00556000> HAL Id: tel-00556000 https://tel.archives-ouvertes.fr/tel-00556000 Submitted on 14 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´ee au d´epˆot et `a la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´es ou non, lished or not. The documents may come from ´emanant des ´etablissements d’enseignement et de teaching and research institutions in France or recherche fran¸cais ou ´etrangers, des laboratoires abroad, or from public or private research centers. publics ou priv´es. UNIVERSITE DE GRENOBLE THESE préparée au Laboratoire d’étude des Transferts en Hydrologie et Environnement (LTHE) dans le cadre de L’Ecole Doctorale Terre, Univers, Environnement pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE GRENOBLE Spécialité : Sciences de la Terre, de l’Univers et de l’Environnement (Earth, Universe and Environmental Sciences) présentée par Kiran NOUSHEEN ARIF intitulée Determination of Hydro-Mechanical Characteristics of Biodegradable Waste- Laboratory and Landfill Site Soutenue le 20 Avril 2010 devant la commission d’examen Mounir BOUASSIDA Rapporteur Professeur, ENI Tunis Guy MATEJKA Rapporteur Professeur, ENSI Limoges Jean-Pierre GOURC Directeur de thèse Professeur, LTHE Philippe DELMAS Examinateur Professeur, CNAM Paris Franck OLIVIER Examinateur Ingénieur, ECOGEOS ACKNOWLEDGEMENTS One year of Masters leading to more than three and a half years of doctoral work have finally culminated into the point where I can express my gratitude to those who made it possible for me to get through what I set out for. Needless to say how tiring this phase becomes especially towards its end, of essence is the fact that it ended well, giving way to, hopefully, a promising life and new chapters of life. Those having gone through the tedious doctoral work know how important a role one’s supervisor plays. Say it my luck or whatever anyone wishes to name it, I had Mr. Jean-Pierre GOURC as my supervisor. The man, being a giant in the field, taught me a lot. He helped me wade through the difficult times, at times pushing and at times encouraging. I am profoundly obliged to him for all the support he lent me. I am highly thankful to the jury members specially the referees, Mr. Mounir BOUASSIDA and Mr. Guy MATEJKA, for their detailed and sincere remarks that they managed to send back while the time was of essence. The valuable comments from the examiners, Mr. Philippe DELMAS and Mr. Franck OLIVIER, were of great help enabling me to further improve my report. I stand indebted to them, particularly to Mr. OLIVIER, my erstwhile senior colleague at the laboratory, with whose gracious support I could incorporate the new version of ISPM model into my thesis report, an important contribution to the scientific community of my domain. Guillaume STOLTZ, a senior colleague and a friend, illuminated me with technical and pedagogical reasoning in long and tireless discussions. Had it not been for his well-disposed nature, my efforts would have increased manifold in order to comprehensively grasp the subject. I am deeply grateful to him. As my work encompassed experimental work all along, I needed the help of technical staff on regular basis. For facilitating my work, Mr. Henri MORA was always there. Without him, it would have been extremely difficult to successfully complete a hectic schedule of experiments. I appreciate him for everything he did for me. It is difficult to name everyone who eased my way to this point, however, this note of gratitude would be incomplete if I don’t mention my friends at my workplace: Lucile TARTARD, Elisabeth CANET, Matthias STAUB, and Anne-Juile TINET, to name a few. Indeed the off and on badinage is indispensable to lighten up the otherwise usually dry and sombre research environment. Their moral support and our confabs left unforgettable memories in my mind. I wish them all the success in their endeavours. Hailing from a distant place, far from the family of origin and culture, a logical outcome is nostalgia which is itself quite difficult to bear if one falls a victim to it. Owing to a very supportive and active Pakistani students community, I didn’t have to face anything of that sort. Be it a local festivity or our traditional events, we were always together. I wish them all the best of luck. Their combined efforts to put forward the true image of Pakistan, as progressive, tolerant, and moderate country are highly appreciative. I take this opportunity to thank the Higher Education Commission of Pakistan with whose funding I have been able to come abroad and complete my studies. It has been a worthwhile experience and I am sure that with the broadened vision and developed competencies, I’ll be able to serve my country in a better manner. Last but not the least, I’d like to express my gratitude to my family: my husband for his non- judgmental and tolerant attitude, and my kids, Khuzemah and Rawahah, whose lovable and innocent faces, gestures and talk brushed off all the cumulated fatigue of the usually tiring day. DEDICATION To my mother Due to whom I am where I am today TABLE OF CONTENTS CHAPTER I I- INTRODUCTION ............................................................................................................................. 3 I-1 TYPES OF SOLID WASTES ......................................................................................................... 3 I-1.1 MUNICIPAL SOLID WASTE .......................................................................................................... 4 I-1.2 MULTI-CRITERION MUNICIPAL SOLID WASTE COMPOSITION ................................................... 6 I-1.3 FOUR STAGE BACTERIAL DECOMPOSITION OF MSW ................................................................ 9 I-1.4 EFFECTS OF DEGRADATION ON BIOCHEMICAL PROPERTIES OF MSW ..................................... 12 I-1.4.1 Composition ...................................................................................................................... 12 I-1.4.2 Temperature & pH ............................................................................................................ 13 I-1.4.3 Leachate ............................................................................................................................ 13 I-1.4.4 Biogas ............................................................................................................................... 15 I-2 LANDFILLS .................................................................................................................................. 16 I-2.1 LANDFILL CONSTRUCTION AND OPERATION ........................................................................... 17 I-2.1.1 Waste Compaction and Pre-Consolidation ....................................................................... 19 I-2.1.2 Bottom Lining System ...................................................................................................... 22 I-2.1.3 Cover System (Cap Liner) ................................................................................................ 24 Different types of cover systems .............................................................................................. 25 I-2.2 POST-CONSTRUCTION BEHAVIOUR .......................................................................................... 27 I-3 WASTE TREATMENT MODES RELATED TO LANDFILLING ........................................ 28 I-3.1 MECHANICAL BIOLOGICAL PRE-TREATMENT (MBP) .............................................................. 29 I-3.1.1 Control of Waste Input and Pre-treatment before Disposal .............................................. 30 I-3.1.2 Potential Advantages of MBP ........................................................................................... 31 I-3.2 IN SITU AEROBIC TREATMENT ................................................................................................. 34 I-3.2.1 Fundamentals and Objectives of Aerobic Stabilisation .................................................... 34 I-3 .2.1.1 Low Pressure Aeration ............................................................................................. 35 I-3 .2.1.2 Over Suction Method ................................................................................................ 35 I-3.2.2 Processes and Effects of Aerobic Stabilisation ................................................................. 36 I-3 .2.2.1 Effects on the Water Path ......................................................................................... 36 I-3 .2.2.2 Effects on the Gas Path ............................................................................................. 36 I-3.2.3 Future Applications of Aerobisation ................................................................................. 36 I-3 .2.3.1 Processes ................................................................................................................... 36 I-3 .2.3.2 Stabilisation Criteria ................................................................................................. 37 i I-3 .2.3.3 GHG Emissions and CO Emission Trading ............................................................. 37 2 I-3.3 BIOREACTOR LANDFILLS .......................................................................................................... 37 I-3.3.1 Anaerobic Bioreactor Landfill .......................................................................................... 38 I-3.3.2 Hybrid (Aerobic-Anaerobic) Bioreactor Landfill ............................................................. 39 I-3.3.3 Potential Advantages of the Bioreactor Landfill ............................................................... 40 I-4 STATUS OF MSW MANAGEMENT IN PAKISTAN .............................................................. 41 I-4.1 DISPOSAL TREND IN PAKISTAN ................................................................................................ 41 I-4.2 MSW COMPOSITION IN PAKISTAN ........................................................................................... 42 I-4.3 CONTEXT AND OBJECTIVES OF THE PRESENT STUDY .............................................................. 42 CHAPTER II II- PHYSICAL MECHANICAL AND HYDROLOGICAL PROPERTIES OF MUNICIPAL SOLID WASTE ................................................................................................................................... 46 II-1 PRESENTATION OF THE MUNICIPAL SOLID WASTE MEDIUM ...................... ERROR! BOOKMARK NOT DEFINED. II-2 PHYSICAL PARAMETERS ...................................................................................................... 48 II - 2.1 LEACHATE ............................................................................................................................. 49 II- 2.1.1 Liquid Density ................................................................................................................ 49 II- 2.1.2 Dynamic Viscosity .......................................................................................................... 49 II - 2.2 BIOGAS .................................................................................................................................. 50 II- 2.2.1 Gas Density ..................................................................................................................... 50 II- 2.2.2 Dynamic Viscosity .......................................................................................................... 51 II - 2.3 SOLIDS DENSITY .................................................................................................................... 51 II-3 STATE PARAMETERS ............................................................................................................. 51 II - 3.1 DEFINITIONS OF VARIOUS DENSITIES ASSOCIATED WITH MSW ........................................... 52 II - 3.2 DEFINITIONS OF MOISTURE CONTENT IN REFERENCE WITH THE WASTE MASS ................... 54 Moisture Content at Field Capacity .............................................................................................. 55 II - 3.3 DEFINITION OF POROSITY AND CORRESPONDING VOLUMETRIC CONTENT PARAMETERS ... 56 II- 3.3.1 Total Porosity.................................................................................................................. 56 II- 3.3.2 Volumetric Liquid Content ............................................................................................. 57 II- 3.3.3 Volumetric Gas Content ................................................................................................. 58 II- 3.3.4 Degree of Saturation ....................................................................................................... 58 II- 3.3.5 Interrelation of the State Parameters ............................................................................... 58 II-4 MECHANICAL PARAMETERS .............................................................................................. 59 ii II - 4.1 SETTLEMENT .......................................................................................................................... 59 II - 4.2 SHEAR STRENGTH PARAMETERS ........................................................................................... 61 II-5 FLUID TRANSPORT PARAMETERS ..................................................................................... 62 II - 5.1 DEFINITION OF FLUID TRANSPORT PARAMETERS ................................................................. 62 II- 5.1.1 Darcy‟s Law for Saturated and Unsaturated Conditions ................................................ 62 II- 5.1.2 Intrinsic Permeability (at Saturation) .............................................................................. 63 II- 5.1.3 Fluid Permeability (Unsaturated State) ........................................................................... 64 II - 5.2 PREVIOUS RESEARCH ON FLUID TRANSPORT PARAMETERS ................................................. 65 II- 5.2.1 Permeability/Hydraulic Conductivity Measurements ..................................................... 66 II- 5.2.2 Effects of Degradation on Physical Parameters of MSW ............................................... 68 II- 5.2.3 Anisotropy of Permeability in Relation with MSW ....................................................... 70 II - 5.3 FLOW MODELS FOR SATURATED AND UNSATURATED POROUS MEDIA ............................... 71 II- 5.3.1 Laws of Intrinsic Permeability ........................................................................................ 71 II - 5.3.1.1 Carman-Kozeny Model .......................................................................................... 71 II - 5.3.1.2 Application of Carman-Kozeny‟s Model to the Gas Permeability ......................... 72 II- 5.3.2 Relative Permeability Models ......................................................................................... 72 II- 5.3.3 Application of Permeability Models to MSW Landfills ................................................. 73 II-6 OEDOPERMEAMETER, HYDRO-MECHANICAL PARAMETERS’ MEASUREMENT AND THE PRINCIPLE APPLIED ................................................................................................... 75 II - 6.1 APPARATUS DESCRIPTION ..................................................................................................... 75 II- 6.1.1 Complimentary Equipment ............................................................................................. 76 II- 6.1.2 Sample Preparation ......................................................................................................... 77 II - 6.2 PHYSICAL AND STATE PARAMETERS ..................................................................................... 77 II- 6.2.1 Volumetric Moisture Content ......................................................................................... 77 II- 6.2.2 Gas Porosity Measurement through Pycnometer (gas saturation) .................................. 78 II- 6.2.3 Total Porosity Measurement ........................................................................................... 80 II- 6.2.4 Conclusions on Total Porosity Measurement ................................................................. 81 II - 6.3 GAS PERMEABILITY MEASUREMENT ..................................................................................... 81 II- 6.3.1 Permanent Flow Method ................................................................................................. 82 II- 6.3.2 Transitory Flow Method ................................................................................................. 83 II - 6.4 PERMEABILITY MEASUREMENT WITH WATER AT SATURATED CONDITION ......................... 84 II- 6.4.1 At Constant Head ............................................................................................................ 84 II- 6.4.2 At Variable Head with Back Pressure ............................................................................ 85 II- 6.4.3 Head Losses within the Apparatus.................................................................................. 86 iii

Description:
Guillaume STOLTZ, a senior colleague and a friend, illuminated me with technical and pedagogical reasoning in long and tireless . I-1.4.3 Leachate .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.