New Series Numerical Data and Functional Relationships in Science and Technology GROUP I VOLUME 21 Elementary Elementary Particles, Particles Nuclei and Atoms SUBVOLUME B Detectors for Particles and Radiation PART 1 Principles and Methods (cid:2)(cid:3)(cid:4) Lanndolt-Börrnstein Nummerical Dataa and Functiional Relatioonships in SScience andd Technologgy New Series / Edditor in Chieef: W. Martiienssen Grooup I: Eleementaryy Particlees, Nuclei and Atooms Vollume 21 Elementaary PPartiicless Subbvolume B Dettectors foor Particles and RRadiation Partt 1 Prinnciples andd Methodss J. Apostolakiss, H. Bichsel, L. Camilleri, GG. De Lellis, M. Delffino A. EEreditato, CC.W. Fabjjan, R. Foorty, D. Foournier, R.. Frühwirthh H.J. Hilke, P. Lecoq, GG. Lutz, L. Lyons, KK. Niwa, VV. Radeka H. SSchopper, W.H. Smiith, A. Strrandlie, O.. Ullaland Editted by C.WW. Fabjan and H. Scchopper ISSN 1615-1844 (Elementary Particles, Nuclei and Atoms) ISBN 978-3-642-03605-7 Springer Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Vol. I/21B1: Editors: C.W. Fabjan, H. Schopper At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag Includes bibliographies. 1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables. I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910. III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2011 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors and Redaktion Landolt-Börnstein, Heidelberg SPIN: 1223 8507 63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper Editor C.W. Fabjan H. Schopper Vienna University of Technology CERN and CH-1211 Geneva 23, Switzerland HEPHY, Austrian Academy of Sciences email: [email protected] Nikolsdorfer Gasse 18 1050 Wien, Austria email: [email protected] Contributors J. Apostolakis M. Delfino CERN, PH Department Universitat Autònoma de Barcelona CH-1211 Geneva 23, Switzerland and email: [email protected] Port d'Informació Científica (PIC) Detector Simulation Campus UAB - Edifici D H. Bichsel 08193 Bellaterra (Cerdanyola del Vallès), Spain CENPA UW email: [email protected] 1211 22nd Ave East Distributed Computing Seattle WA 98112-3534, USA A. Ereditato email: [email protected] Albert Einstein Center for Fundamental Physics The Interaction of Radiation with Matter Laboratory for High Energy Physics (LHEP) L. Camilleri University of Bern Nevis Labs, Columbia University Sidlerstr. 5 P.O. Box 137 3012 Bern, Switzerland Irvington-on-Hudson, NY 10533, USA email: [email protected] email: [email protected] Nuclear Emulsions Neutrino Detectors C.W. Fabjan G. De Lellis Vienna University of Technology Dipartimento di Scienze Fisiche and Università di Napoli Federico II HEPHY, Austrian Academy of Sciences and Nikolsdorfer Gasse 18 INFN Sezione di Napoli 1050 Wien, Austria Complesso Univ. Monte S. Angelo email: [email protected] Via Cintia Introduction, Calorimetry 80126 Napoli, Italy R. Forty email: [email protected] CERN, PH Department Nuclear Emulsions CH-1211 Geneva 23, Switzerland email: [email protected] Ring Finding and Particle Identification VI Contributors D. Fournier K. Niwa LAL, Bat 200, Université Paris-Sud Department of Physics 91405 Orsay, France Nagoya University email: [email protected] 464-8602 Nagoya, Japan Calorimetry email: [email protected] Nuclear Emulsions R. Frühwirth Institute of High Energy Physics V. Radeka Austrian Academy of Sciences Brookhaven National Laboratory Nikolsdorfer Gasse 18 Instrumentation Division 1050 Wien, Austria Upton, NY 11973-5000, USA email: [email protected] email: [email protected] Pattern Recognition and Reconstruction Signal Processing for Particle Detectors H.J. Hilke H. Schopper CERN, PH Department CERN CH-1211 Geneva 23, Switzerland CH-1211 Geneva, Switzerland email: [email protected] email: [email protected] Gaseous Detectors Introduction P. Lecoq W.H. Smith CERN, PH Department University of Wisconsin CH-1211 Geneva 23, Switzerland Physics Department email: [email protected] 1150 University Ave. Scintillation Detectors for Charged Particles Madison, WI 53706-1390, USA and Photons email: [email protected] Triggering and High-Level Data Selection G. Lutz PNSensor GmbH A. Strandlie and Gjøvik University College MPI-Halbleiterlabor P.O. Box 191, 2802 Gjøvik, Norway Otto Hahn Ring 6, 81739 München, Germany and email: [email protected] University of Oslo Solid State Detectors email: [email protected] Pattern Recognition and Reconstruction L. Lyons Universtiy of Oxford O. Ullaland Particle & Nuclear Physics CERN, PH Department Keble Road, Oxford OX1 3RH, UK CH-1211 Geneva 23, Switzerland email: [email protected] email: [email protected] Statistical Issues in Particle Physics Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors Landolt-Börnstein Springer Tiergartenstr. 17, D-69121 Heidelberg, Germany fax: +49 (6221) 487-8648 email: [email protected] Internet http://www.springermaterials.com Preface Landolt-Börnstein Series has become known as a compilation of numerical data and functional relations. With the aim to extend the purpose and to modernize the series some volumes have been published already in the past which went beyond this limited objective and provided a more comprehensive summary of a special field. As a further step in this direction the Volume I/21 will provide in the style of an encyclopedia a summary of the results of particle physics and the methods and instruments to obtain this information. In Subvolume I/21A the theoretical and experimental results of particle physics have been reported. This Subvolume I/21B will deal with detectors and data handling and Subvolume I/21C will be devoted to the technology of accelerators and colliders. During the past decade an enormous progress was achieved as far as the development of new detection methods of charged and neutral particles as well as photons are concerned. These achievements became necessary in view of the requirements for new particle colliders, in particular the LHC at CERN, but also for non-accelerator experiments. The new detection methods found also numerous applications outside particle physics. It was possible to find very outstanding authors for the various chapters guaranteeing that the different sub-fields are summarized in a most competent way. We wish to warmly thank them for their efforts and patience. Thanks are also due to the members of the Landolt- Börnstein editorial staff who have made major contributions to the successful production of this volume. Recently the Editor-in-Chief of Landolt-Börnstein Series, Prof. W. Martienssen, passed away. In recognition for his achievements we would like to dedicate this volume to his memory. Geneva, April 2010 The Editors Contents Subvolume I/21B1: Chapters 1 - 4 Subvolume I/21B2: Chapters 5 - 8 The following Chapters are contained in the present Subvolume I/21B1 1 Introduction (C.W. FABJAN, H. SCHOPPER) . . . . . . . . . . . . . . . . . . . . 1-1 2 The Interaction of Radiation with Matter (H. BICHSEL) . . . . . . . . . . . . . 2-1 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1.2 Types of collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.1.3 Observable effects of radiations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.1.4 Stopping power dE/dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 2.3 Description of the most frequent interactions of single fast charged particles . . . . 2-3 2.3.1 Narrow beams and straggling of heavy charged particles . . . . . . . . . . . . . . 2-4 2.3.2 Narrow beams of low energy electrons . . . . . . . . . . . . . . . . . . . . . . . 2-4 2.3.3 Relation between track length and energy loss . . . . . . . . . . . . . . . . . . . . 2-4 2.3.4 Nuclear interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 2.4 Photon interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 2.4.1 Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 2.4.2 Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 2.4.3 Data for DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 2.5 Interaction of heavy charged particles with matter . . . . . . . . . . . . . . . . . . 2-9 2.5.1 Inelastic scattering, excitation and ionization of atoms or condensed state matter . . 2-10 2.5.1.1 Bethe-Fano (B-F) method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 2.5.1.2 Relativistic extension of B-F method . . . . . . . . . . . . . . . . . . . . . . . . 2-11 2.5.1.3 Fermi-virtual-photon (FVP) cross section . . . . . . . . . . . . . . . . . . . . . . 2-13 2.5.2 Integral quantities: moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 2.5.2.1 Comparison of moments: Si, Ne, P10 . . . . . . . . . . . . . . . . . . . . . . . . 2-18 2.6 Electron collisions and bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . 2-18 2.6.1 Electronic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 2.6.2 Bremsstrahlung BMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 2.7 Energy losses along tracks: multiple collisions and spectra . . . . . . . . . . . . . 2-23 2.7.1 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 2.7.2 Analytic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 2.7.2.1 Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 2.7.2.2 Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26 2.7.3 Analytic methods for thick absorbers . . . . . . . . . . . . . . . . . . . . . . . . 2-26 2.8 Evaluations and properties of straggling functions . . . . . . . . . . . . . . . . . . 2-26 2.8.1 Very thin absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26 2.8.2 Thin absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 2.8.3 Thick absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 2.8.4 Comparisons of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 2.9 Energy deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 2.9.1 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 2.9.2 Delta rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 2.9.3 Auger electrons and photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32 Contents IX 2.9.4 Cherenkov radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33 2.9.5 Transition radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33 2.9.6 Ion beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33 2.10 Particle ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 2.11 Discussion and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 2.12 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 References for 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38 3 Particle Detectors and Detector Systems . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Charged Particle Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1.1 Scintillation Detectors for Charged Particles and Photons (P. LECOQ) . . . . . 3-1 3.1.1.1 Basic detector principles and scintillator requirements . . . . . . . . . . . . . . . . 3-1 3.1.1.1.1 Interaction of ionizing radiation with scintillator material . . . . . . . . . . . . . . 3-1 3.1.1.1.2 Important scintillator properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.1.1.1.2.1 Physico-chemical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.1.1.1.2.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 3.1.1.1.2.3 Radiation hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 3.1.1.1.3 Scintillator requirements for various applications . . . . . . . . . . . . . . . . . . 3-6 3.1.1.1.3.1 High-and medium-energy physics particle detectors . . . . . . . . . . . . . . . . . 3-7 3.1.1.1.3.2 Astrophysics and space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.1.1.1.3.3 Spectrometry of low energy (cid:2)-quanta . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.1.1.1.3.4 Medical imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 3.1.1.1.3.5 Safety Systems and Homeland Security . . . . . . . . . . . . . . . . . . . . . . . 3-10 3.1.1.1.4 Organic material, glass and condensed gases . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.2 Scintillation and quenching mechanisms in inorganic scintillators . . . . . . . . . . 3-11 3.1.1.2.1 The 5 steps in scintillation process . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.2.2 Scintillation efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 3.1.1.2.3 Response linearity and energy resolution . . . . . . . . . . . . . . . . . . . . . . 3-15 3.1.1.3 Role of defects on scintillation properties and on radiation damage in inorganic scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 3.1.1.3.1 Structural defects in a crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 3.1.1.3.1.1 Point size defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.1.1.3.1.2 Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.1.1.3.2 Impact of defects on optical properties . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.1.1.3.2.1 Charge carrier traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3.1.1.3.2.2 Defect associated absorption bands . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 3.1.1.3.3 Radiation damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21 3.1.1.4 Crystal engineering. Impact of new technologies . . . . . . . . . . . . . . . . . . 3-24 3.1.1.5 Table of commonly used scintillators . . . . . . . . . . . . . . . . . . . . . . . . 3-26 References for 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 3.1.2 Gaseous Detectors (H.J. HILKE) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 3.1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 3.1.2.2 Basic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 3.1.2.2.1 Gas ionization by charged particles . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 3.1.2.2.1.1 Primary clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29 3.1.2.2.1.2 Cluster size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 3.1.2.2.1.3 Total number of ion pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 3.1.2.2.1.4 Dependence of energy deposit on particle velocity . . . . . . . . . . . . . . . . . 3-32 3.1.2.2.2 Transport of Electrons and Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32 3.1.2.2.2.1 Drift velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32 X Contents 3.1.2.2.2.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37 3.1.2.2.2.3 Electron attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40 3.1.2.2.3 Avalanche amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40 3.1.2.2.3.1 Operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40 3.1.2.2.3.2 Gas Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42 3.1.2.2.3.3 Dependence of amplification on various factors . . . . . . . . . . . . . . . . . . . 3-43 3.1.2.2.3.4 Statistical Fluctuations of the Amplification . . . . . . . . . . . . . . . . . . . . . 3-43 3.1.2.2.4 Signal formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44 3.1.2.2.5 Limits to space resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46 3.1.2.2.6 Ageing of wire chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46 3.1.2.3 Detector Designs and Performance . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.1.2.3.1 Single Wire Proportional Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 3.1.2.3.2 Multiwire Proportional Chambers (MWPC) . . . . . . . . . . . . . . . . . . . . . 3-49 3.1.2.3.3 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50 3.1.2.3.4 Micopattern Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54 3.1.2.3.4.1 Gas Electron Multiplier (GEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54 3.1.2.3.4.2 Micromegas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55 3.1.2.3.5 Parallel Plate Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55 3.1.2.3.5.1 Parallel Plate counters (PPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56 3.1.2.3.5.2 Pestov Spark Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56 3.1.2.3.5.3 Spark Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56 3.1.2.3.5.4 Flash Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56 3.1.2.3.5.5 Resistive Plate Counters (RPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56 3.1.2.3.5.6 Streamer Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57 3.1.2.3.6 Calibration with laser tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-57 3.1.2.3.7 Liquid Ionization Chambers for Tracking . . . . . . . . . . . . . . . . . . . . . . 3-59 3.1.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59 References for 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60 3.1.3 Solid State Detectors (G. LUTZ) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-63 3.1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-63 3.1.3.2 Basic detection process of single photons in semiconductors . . . . . . . . . . . . 3-63 3.1.3.3 Basics of semiconductor physics . . . . . . . . . . . . . . . . . . . . . . . . . . 3-64 3.1.3.4 Semiconductor detector principles . . . . . . . . . . . . . . . . . . . . . . . . . . 3-66 3.1.3.4.1 Reverse biased diode (as used in Strip detectors) . . . . . . . . . . . . . . . . . . 3-66 3.1.3.4.2 Semiconductor drift chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-67 3.1.3.4.3 DEPFET detector-amplification structure . . . . . . . . . . . . . . . . . . . . . . 3-67 3.1.3.5 Silicon strip detectors (used in tracking) . . . . . . . . . . . . . . . . . . . . . . . 3-68 3.1.3.5.1 Strip detector readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68 3.1.3.5.2 Strip detectors with double-sided readout . . . . . . . . . . . . . . . . . . . . . . 3-69 3.1.3.5.3 Strip detectors with integrated capacitive readout coupling and strip biasing . . . . 3-70 3.1.3.6 Detector front-end electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-72 3.1.3.6.1 Operating principles of transistors . . . . . . . . . . . . . . . . . . . . . . . . . . 3-72 3.1.3.6.2 The measurement of charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73 3.1.3.6.3 Integrated Circuits for Strip Detectors . . . . . . . . . . . . . . . . . . . . . . . . 3-76 3.1.3.7 Silicon drift detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-78 3.1.3.7.1 Linear Drift Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-79 3.1.3.7.2 Radial and single side structured Drift Devices . . . . . . . . . . . . . . . . . . . 3-81 3.1.3.8 Charge coupled devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 3.1.3.8.1 MOS type CCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 3.1.3.8.2 Fully depleted p-n CCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-84 3.1.3.8.3 CCD applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85 3.1.3.9 Active Pixel Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87 3.1.3.9.1 Hybrid pixel detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87 Contents XI 3.1.3.9.2 Monolithic Active Pixel Sensors (MAPS) . . . . . . . . . . . . . . . . . . . . . . 3-88 3.1.3.9.3 DEPFET Active Pixel Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-89 3.1.3.10 Avalanche Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-94 3.1.3.10.1 The avalanche diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-95 3.1.3.10.2 Optical photon detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-96 3.1.3.10.3 Photon counting with arrays of avalanche devices . . . . . . . . . . . . . . . . . . 3-97 3.1.3.10.4 Avalanche drift diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97 References for 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97 3.2 Calorimetry (C.W. FABJAN, D. FOURNIER) . . . . . . . . . . . . . . . . . . . . . 3-100 3.2.1 Introduction, definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-100 3.2.2 Calorimetry: Fundamental Phenomena . . . . . . . . . . . . . . . . . . . . . . . 3-100 3.2.2.1 Interactions of electrons and photons with matter . . . . . . . . . . . . . . . . . . 3-100 3.2.2.2 Electromagnetic showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-106 3.2.2.3 Homogeneous and sampling calorimeters . . . . . . . . . . . . . . . . . . . . . . 3-110 3.2.2.4 Sampling calorimeters and sampling fluctuations . . . . . . . . . . . . . . . . . . 3-112 3.2.2.5 Physics of the hadronic cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-114 3.2.2.6 Hadronic shower profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-116 3.2.2.7 Energy resolution of hadron calorimeters . . . . . . . . . . . . . . . . . . . . . . 3-117 3.2.2.8 Muons in a dense material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-120 3.2.2.9 Monte Carlo Simulation of calorimeter response . . . . . . . . . . . . . . . . . . 3-121 3.2.3 Readout methods in calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . 3-124 3.2.3.1 Scintillation light collection and conversion . . . . . . . . . . . . . . . . . . . . . 3-124 3.2.3.2 Cherenkov light collection and conversion . . . . . . . . . . . . . . . . . . . . . 3-127 3.2.3.3 From ionisation to electrical signal in dense materials . . . . . . . . . . . . . . . . 3-128 3.2.3.4 Gas amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-130 3.2.3.5 High rate effects and radiation damage . . . . . . . . . . . . . . . . . . . . . . . 3-131 3.2.3.6 Calibration and monitoring of calorimeter response . . . . . . . . . . . . . . . . . 3-132 3.2.4 Auxiliary Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-134 3.2.4.1 Position and angular measurements . . . . . . . . . . . . . . . . . . . . . . . . . 3-134 3.2.4.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-135 3.2.4.3 Electron and photon identification . . . . . . . . . . . . . . . . . . . . . . . . . . 3-135 3.2.4.4 Muon Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-136 3.2.5 Jets and Missing Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-137 3.2.6 Triggering with calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-138 3.2.7 Examples of Calorimeters and Calorimeter Facilities . . . . . . . . . . . . . . . . 3-138 3.2.7.1 The MEG Noble Liquid homogeneous calorimeter with light readout . . . . . . . . 3-138 3.2.7.2 The CMS electromagnetic Crystal Calorimeter . . . . . . . . . . . . . . . . . . . 3-139 3.2.7.3 The ATLAS 'accordion' electromagnetic calorimeter . . . . . . . . . . . . . . . . 3-140 3.2.7.4 The ZEUS calorimeter at HERA. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-141 3.2.7.5 Facilities at the LHC and a future Linear Collider . . . . . . . . . . . . . . . . . . 3-142 3.2.7.5.1 Facilities at LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-142 3.2.7.5.2 Developments for Linear Collider calorimetry . . . . . . . . . . . . . . . . . . . . 3-144 3.2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-145 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-145 References for 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-145 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors (O. ULLALAND) . . . . . . . . . . . . . . . . . 3-149 3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-149 3.3.2 Time of Flight Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-149 3.3.2.1 Scintillator hodoscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-151 3.3.2.2 Parallel plate ToF detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-153