LA-UR-17-24316 (Accepted Manuscript) Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics Kubicek-Sutherland, Jessica Zofie Vu, Dung M. Mendez, Heather Jakhar, Shailja Mukundan, Harshini Provided by the author(s) and the Los Alamos National Laboratory (2017-12-11). To be published in: Biosensors DOI to publisher's version: 10.3390/bios7030025 Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-17-24316 Disclaimer: Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. biosensors Review Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics JessicaZ.Kubicek-Sutherland1 ,DungM.Vu1,HeatherM.Mendez2,3,ShailjaJakhar1 andHarshiniMukundan1,* 1 PhysicalChemistryandAppliedSpectroscopy,ChemistryDivision,LosAlamosNationalLaboratory, LosAlamos,NM87545,USA;[email protected](J.Z.K.-S.);[email protected](D.M.V.);[email protected](S.J.) 2 DepartmentofChemicalandBiologicalEngineering,UniversityofNewMexico,Albuquerque, NM87131,USA;[email protected] 3 TheNewMexicoConsortium,LosAlamos,NM87544,USA * Correspondence:[email protected];Tel.:+1-505-606-2122 Received:31May2017;Accepted:30June2017;Published:4July2017 Abstract:Rapiddiagnosisiscrucialtoeffectivelytreatinganydisease.Biologicalmarkers,orbiomarkers, havebeenwidelyusedtodiagnoseavarietyofinfectiousandnon-infectiousdiseases. Thedetection of biomarkers in patient samples can also provide valuable information regarding progression andprognosis. Interestingly,manysuchbiomarkersarecomposedoflipids,andareamphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhancesthedifficultyofdevelopingsensitiveandaccuratesensorsforthesetargets. Manyofthe physiologicallyrelevantmoleculesinvolvedinpathogenesisanddiseaseareindeedamphiphilic.This chemicalpropertyislikelyessentialfortheirbiologicalfunction,butalsomakesthemchallenging to detect and quantify invitro. In order to understand pathogenesis and disease progression whiledevelopingeffectivediagnostics,itisimportanttoaccountforthebiochemistryoflipidand amphiphilicbiomarkerswhencreatingnoveltechniquesforthequantitativemeasurementofthese targets. Here,wereviewtechniquesandmethodsusedtodetectlipidandamphiphilicbiomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significanceoftheirbiochemicalpropertiesinthedesignandexecutionoflaboratoryanddiagnostic strategies. Thebiochemistryofbiologicalmoleculesisclearlyrelevanttotheirphysiologicalfunction, andcallingouttheneedforconsiderationofthisfeatureintheirstudy,anduseasvaccine,diagnostic andtherapeutictargetsistheoverarchingmotivationforthisreview. Keywords: biomarkers;biosensors;amphiphile;lipid;diagnostics 1. Introduction Theutilityofadiagnosticismeasuredbyitsabilitytoproviderapidandreliableinformationto guidetreatment. Thepastcenturyhasseenariseinmoleculardiagnosticstrategiesformeasuring disease-specificsignaturesinpatientsamples(e.g.,blood,urine,tissueandothers)usingavariety ofbiosensortechnologies. Abiosensorutilizesabiologicalcomponentorbiocatalysttodetectthe presenceofananalyteandatransducertocreateaquantifiablesignalfromthisinteraction. Fora biosensor to be used feasibly in a clinical setting, it must be highly specific for the target analyte, accurateinpatientsamples,rapidandreliable,andresistanttonon-specificinteractionsinclinical samples. Inaddition,forsomeapplications,especiallyinresource-poorconditions,itisalsodesirable forthesensortobecost-effectiveandeasy-to-use[1]. Inordertoavoidfalsepositive(signalinthe absenceofanalyte)andfalsenegative(analytepresentwithoutsignal)signals,thebiocatalystand transducermustbecarefullyconsideredforeachtargetanalyte. Biosensors2017,7,25;doi:10.3390/bios7030025 www.mdpi.com/journal/biosensors Biosensors2017,7,25 2of24 Identifyingtargetanalytesandtheirpresentationinahostduringdiseaseisofcrucialimportance for the success of such molecular diagnostic technologies. Biomarkers are indicators of biological processesanddisease-specificbiomarkersareofgreatclinicalvaluefordiagnostics. Understanding the interactions between the biomarker and its host is key to developing assays for the detection ofsuchanalytesinclinicalsamples. Becauseoftheeaseofpurificationanddetection,proteinsand nucleicacidshavebeenextensivelyusedasdiagnostictargets. Traditionally,nucleicacidsandproteins havebeentargetedasbiomarkersforthediagnosisanddetectionofdisease, primarilybecauseof theavailabilityofavarietyofsensitiveandtailoredmethodsforthedetectionofthesebiochemical signatures(reference).However,anothercategoryofbiomoleculesthatplayimportantrolesinavariety ofcellularprocesses,andcanthereforeserveasindicatorsofdiseaseandanalytesforbiosensorsis lipidsandamphiphiles[2]. Besidesmembraneformation,lipidsalsoplayacrucialroleincellsignaling (steroids) and energy storage. The brain is composed of 40%–81% lipid, with the myelin sheath being78%–81%lipidicinbiochemistry[3]. Manyofthebacterialvirulencefactorsrecognizedbythe humaninnateimmuneresponse,suchaslipopolysaccharide(LPS)andlipoteichoicacid(LTA),are amphiphiliclipoglycans[4–10]. Thestructureoflipidsisfarmorediversethanthatofproteins,nucleic acidsorcarbohydrates,allowingforhighlyspecificbiomarkersforavarietyofdiseases. However, alllipidscontainatleastonehydrocarbonchainthatisinsolubleinwatermakingthemdifficultto detectinaqueoussolutionssuchasblood,whichhaslargelylimitedtheirapplicationasdiagnostic targets. Indeed,currently,rapiddetectionoflipidatedtargetsislargelyachievedviamethodsthat wereoriginallydesignedforproteins. Here,wereviewadvancementsinmethodsfordetectionoflipid andamphiphilicbiomarkersassociatedwithbothinfectiousandnon-infectiousdiseasesdescribing theadvantagesandlimitationsofeachapproachinclinicaldiagnostics(Table1). Table1. Advantagesandlimitationsofsensorsasclinicaldiagnostictoolsfordetectinglipidand amphiphilicbiomarkers. Method Advantages Limitations Massspectrometry Sensitive Expensive Specific Samplepreparationcanbeextensive Worksinpatientsamples Requireshighlytrainedpersonnel Requireslaboratoryinfrastructure NMR-basedsensors Rapid Lowsensitivity Reproducible Lowspecificity Worksinpatientsamples Samplepreparationcanbeextensive Requireshighlytrainedpersonnel Requireslaboratoryinfrastructure Opticalbiosensors SPR-basedsensors Rapid Lowsensitivityinpatientsamples Specific Interferometry-basedsensors Low-cost Lowspecificityinpatientsamples Sensitive Waveguide-basedsensors Rapid Shortshelf-lifeoflabeledreagents Reproducible Sensitive Specific Worksinpatientsamples Electrochemicalbiosensors Rapid Lowsensitivityinpatientsamples Reproducible Lowspecificityinpatientsamples Mechanicalbiosensors Rapid Lowsensitivityinpatientsamples Lowspecificityinpatientsamples Reproducibility Biosensors2017,7,25 3of24 2. MethodsforDetectingLipidandAmphiphilicBiomarkers 2.1. StorageandProcessingofPatientSamples Samplecollectionandpreparationisacriticalconsiderationforthedetectionanybiomarker[11], but lipidic targets warrant further attention [12]. Common lab methods such as freeze/thaw and chemicalextractionscanhaveaprofoundeffectontheviabilityofamphiphilicbiomarkers[13,14]. Further,dependingonthesample,lipidandamphiphilicbiomarkersareoftensequesteredbyhost factors,furtherreducingtheiravailabilityfordirectdetection[15]. Therefore,anybiosensordesigned todetectamphiphilicbiomarkersmustaccountfortheiruniquebiochemicalproperties. 2.2. MassSpectrometry Lipidomicsrequiresathoroughcharacterizationofthestructureandthefunctionoflipidswithin alivingsystem. Thestudyofamphiphilicbiomarkers,asdescribedhere,isacompositeoflipidomics, but involves the consideration of the hydrophilic components of the biomarker in addition to the hydrophobiclipids. Sinceitsinceptionintheearly20thcentury,massspectrometry(MS)hasplayed asignificantroleincharacterizationoflipids[16–18],andthishasbeenextensivelyreviewed. Here, wewillfocusontheadaptiveapplicationofMStoamphiphilicbiomarkers. MSionizeslipidsandsortsionsbasedontheirmass-to-chargeratio. Ithasbeenwidelyused tocharacterizelipids[19–23],especiallywiththedevelopmentofsoftionizationtechniquessuchas electrosprayionization(ESI)andmatrix-assistedlaserdesorptionionization(MALDI).Lipidextraction isusuallythefirststepforlipidanalysis,andseparatesthelipidiccomponents(organicphase)from othercomponentssuchasproteinsandnucleicacids(aqueousphase). Mostwidelyusedextraction methodshavebeenadaptedfromFolch[24]orBlighandDyer[25],inwhichamixtureofmethanol, chloroformandwaterareappliedforphaseseparation.However,shotgunlipidomicmethodshavealso beendevelopedwhichomitthechromatographicseparationandsampleprocessingdescribedabove, andanalyzesalllipidclassestogether,insteadusingionizationadditivestoprovidediscriminative identification[16]. Thismethodmightbemoresuitableespeciallyforbiomarker-discovery,wherein thereisnopriorartregardingthebiomarkersbeingidentified/measured. Chromatographicmethodssuchasgaschromatography,thin-layerchromatography,high-performance liquidchromatography(HPLC),orultra-performanceliquidchromatography(UPLC)[21,26]areused forseparationoflipidmixtures.HPLCandUPLCarehavebroaderapplicationsinlipidanalysis[20,26] andcanbeperformedinnormalphase(lipidclassseparationbasedontheirdifferentpolaritiesand dipolemoments)orreversephase(separateslipidaccordingto their hydrophobicityandisbased onfatty-acylcompositions). CouplingofseparationwithLCmethodsallowslipidstoberesolved sequentiallywithgreaterionizationyields,decreasedionsuppressionfrommajorlipidclasses,and increasedsensitivity[20,27]. However,thisLCstepcanbebypassed,withdirectinfusion(shotgun lipidomics) of lipid samples, which simultaneously analyzes the lipid species in the crude lipid extract[28,29]. Thismethoddoesnotrequireaprioridecisionsonwhichlipidspeciestomeasure, isrelativelysimple,high-throughput,andfastwithshortdataacquisitiontimes. However,amajor limitationofthismethodisthathighlyabundantlipidscancompeteforionizationwiththeminor species,andmaskdetectionofthelatter. MALDI-MSisbasedontheutilizationofanultraviolet–absorbingmatrixthatinitiallyabsorbsthe energyofthelaserandmediatesthegenerationofions[30,31]. ESI-MSusesahighvoltageelectrospray to aerosolize the lipid sample and generate ions to charge the lipid molecule [19,32]. MALDI or ESI ionization can be combined with several types of mass analyzers such as triple quadrupole, time-of-flight(TOF),iontrap,andorbitraptofurthercharacterizedifferentlipidclassesandspecies[32,33]. Both quadrupole and TOF mass analyzers are commonly used and their configuration together (e.g., triple quadrupule (QqQ), quadrupole time-of-flight (QTOF)) as tandem mass spectrometric instruments to break down the precursor ions into fragmented product ions, can provide further chemical and structural resolution on the lipid species [34,35]. As an example, ESI-MS has been Biosensors2017,7,25 4of24 successfully applied to characterize cardiolipin [35]. Cardiolipin, a biomarker implicated in heart disease and cancer, is a phospholipid present in mitochrondria and is a component of bacterial membrane[36,37]. Thediversityofcardiolipinmolecularspeciesisfoundinboththeidentityand positionofitsfourfattyacylmoieties. MinklerandHoppelshowedthatreverse-phaseionpairHPLC coupled with a triple quadrupole MS/MS linear ion trap mass spectrometer to generate MS/MS washighlyeffectiveincharacterizingcardiolipinfromdifferentspecies(e.g.,ratliver,mouseheart, bovineheart,dogheart)[35],withthespectrafacilitatingdeductionofthestructureofcardiolipin: the diacylglycerolphosphateregion,themonoacylglycerolregion,andthefattyacidregion[35]. Mass spectrometry has been used by clinical laboratories to rapidly diagnose both infectious and non-infectious diseases, detect drug toxicity, monitor treatment as well as to discover new biomarkers[38]. However,clinicalmassspectrometrysystemssuchasVITEK® MSbyBioMerieux areexpensivetosetupandmaintainandrequiretrainedpersonneltoperformandanalyzethetests limitingitsutilityasapoint-of-carediagnostictool. 2.3. NuclearMagneticResonance(NMR) NMR spectroscopy is one of the most powerful analytical techniques for lipid analysis of biological matrices (e.g., cells, tissue, and biological fluids), owing to the natural abundance of hydrogen in such samples [39–43]. This method is nondestructive, nonselective, and provides detailedmolecularinformation,whichcanbeofextensivevalueinanalyzingamphiphilicbiomarkers. Specifically, high-field proton nuclear magnetic resonance (1H-NMR) spectroscopy is used for molecular profiling [44,45], allowing for identification of biomarkers associated with diseases such as tuberculosis [46], cancer [47,48], heart disease [49]; and others, identifying underlying causes of disease [50], and identifying diagnostic biomarkers and new therapeutic strategies [51]. High-resolution,one-dimensional(1D)1HNMRisreproducibleandsimple[39,49].Ithasbeenapplied for metabolomics since the 1980s [39,42], specifically, for plasma [48], serum [52], urine [43], and feces[53]. Tissuesarenormallyexaminedintact[54]andspectracanbeobtainedrapidly(<5min)[39] withdetectionlimitsaround1to10µMat>500MHz[42,50]MSandNMRareoftenusedinconjunction withoneanother[55,56]. AlthoughNMRhasdecreasedsensitivityincomparisontoMS[50,57],ithas otheradvantagessuchasbeinganon-destructivetechniquewithminimalsamplepreparation,and providingquantitationofmolecularstructures[18,57]. Couplingthetwomethodyieldssignificantly greatersensitivity(attomoletofemtomole)[58]. LipidomicNMRisassociatedwithmanychallenges. Asubstantialnumberofbiomoleculesin complexmatriceshavesimilarresonances,duetosimilarprotonchemicalshiftranges[42,59]resulting inconsiderablepeakoverlap[46,60]andalowsignal-to-noiseratio[61]. Minimizingpeakoverlapand increasingsensitivitycanberesolvedbyusinghighresolutionspectrometers(800to950MHz)[62]. Resonancelinebroadening[63]attributedtotheformationofmicellesinanaqueousenvironmentor constrainedmolecularmovementasaresultoflipidaggregationintobilayers[42]isanotherchallenge thatisovercomebychemicalorphysicaltreatmentofthesample[42]. The use of two-dimensional (2D) NMR [64,65] can also overcome the above challenges of 1D 1HNMR.2Dtechniquessuchastheheteronuclearsinglequantumcoherence(HSQC)methodare bettersuitedforlipidprofilingbecauseofitsabilitytodetectresonancesforboth1Hnucleiand13C nuclei[61],thusallowingforcorrelationbetween1Hand13Cchemicalshiftsandprovidingelucidation ofC-Hbondswithinastructure[50]. Althoughdetectionof13CispossiblewithHSQC,thenatural abundanceof13C[66]isrelativelylow,requiringpriorenrichmentofcellswith13C[46]. 2DNMRis moretimeconsuming(>1h/spectrum)incomparisonto1D1HNMR(<10min)[43,50,67]. Absolute quantitationoflipidsusingNMRremainsachallenge[68]. HighresolutionNMRhasbeenshowntodetectavarietyofdiseasesdirectlyinhumantissue andfluidsamples[69]. PortableNMR-basedbiosensorshavealsobeendevelopedforuseasmedical diagnostics[70]. However,portableNMRsensorssufferfromlowsensitivityandspecificitywhile high-resolutionNMRtoolsrequireexpensiveequipmentandtrainedpersonneltoanalyzeresults. Biosensors2017,7,25 5of24 Biosensors 2017, 7, 25 5 of 25 2.4. Biosensors BBrrooaaddllyy ddeefifnineded,b, iboisoesnesnosrosrrse croegcnoigzneitzaer gteatrmgeot lemcuolleescuanleds parnodd upceroadmuceea sau rmabeleassuigranballe. Ospigtincaall., eOlepcttircoacl,h eelmecitcraolcahnemdimcaelc ahnadn imcaelcbhiaonseicnaslo briso(sFeingsuorres 1(F)ihgauvree 1b)e ehnavaed baepetned adfoarpttheed dfoert etchteio dnetoefcltiipoind oicf alinpdidaicm panhdip haimlicpbhiiopmhialirck ebrsio,musairnkgeras,v aursiientyg oaf avsasariyetmy eothf odasoslaoyg iemsewthhoicdholcoagniebse wcahteicgho riczaend base (caa)telagboerliezdeda nasd a()b l)albaebleeld-f raened. Lba) blaebleedl-farsesea. yLsaibnedleirde catslsyamyse iansduirreecbtilnyd minegasoufraen bainndailnygte otfo atnh eantaarlgyetet mtoo tlheec utaler,guets imngolaecruelpeo, urtseirngm ao lreecpuolerte(ar nmionldeiccualteo (ra).n Linadbieclaetdora)s. sLaaybsehleadv eastshaeysa dhvaavnet tahgee aodfvraenatdaiglye mofu rletaipdlielyxi nmgu,ltainpdlexairnegh, iagnhdl yardee hsiirgahbllye dinesicrlainbilcea ilna cplpinliiccaalt iaopnps.licLaatiboenls-f. rLeaebaesls-faryese masesaaysus rmeesaigsunarel cshigannagle cshdainrgecetsl ydiarsescotlcyia atsesdowciaitthede iwthiethr teairtgheetr btainrgdeint gbionrdcinegll uolra rceplrluolcaers sperso,cwesistheso,u wttithheonuet etdhef onreaend efoxrte arnn aelxrteeprnoratle rre.pTohreteard. vTahnet aagdevsaonftalagbeesl -ofrf eleabbeiol-sferenes obrisoisnecnlsuodres rinedcluucdeed raesdsuaycecdo maspslaeyx ictoy,mcposletxaintyd, dcoesctr eaansdin dgeicnrteearsfienrgen icneteorffetrheenlcaeb oelf othneb lianbdeiln ognb beitnwdeienng lbigeatwndeeann ldigtaanrgde at.nd target. Figure 1. Examples of biosensor techniques incorporating lipids for the detection of analytes include Figure1.Examplesofbiosensortechniquesincorporatinglipidsforthedetectionofanalytesinclude (a) optical (b) electrical and (c) mechanical. (a)optical(b)electricaland(c)mechanical. 2.4.1. Optical Biosensors Detecting Lipids 2.4.1. OpticalBiosensorsDetectingLipids Optical biosensors measure binding-induced changes in light from the sensor surface. Surface Opticalbiosensorsmeasurebinding-inducedchangesinlightfromthesensorsurface. Surface plasmon resonance (SPR) is a label-free technology that has been used to detect the interaction of plasmon resonance (SPR) is a label-free technology that has been used to detect the interaction of amphiphilic molecules with lipid bilayers, for ligand screening and biomarker discovery [71]. In SPR amphiphilicmoleculeswithlipidbilayers,forligandscreeningandbiomarkerdiscovery[71]. InSPR sensing, a ligand is immobilized on a gold-coated surface while an interacting molecule is injected in sensing,aligandisimmobilizedonagold-coatedsurfacewhileaninteractingmoleculeisinjectedin aqueous solution, and the change in resonance associated with binding is measured optically using a aqueoussolution,andthechangeinresonanceassociatedwithbindingismeasuredopticallyusinga spectrometer. SPR has been optimized for measuring protein-protein affinities using the BIAcore™ spectrometer. SPRhasbeenoptimizedformeasuringprotein-proteinaffinitiesusingtheBIAcore™ (GE Healthcare) system. In original iteration, SPR systems lack resolution, cannot multiplex, and are (GEHealthcare)system. Inoriginaliteration,SPRsystemslackresolution,cannotmultiplex,andare difficult to miniaturize. However, several researchers are working on overcoming these limitations, difficulttominiaturize. However,severalresearchersareworkingonovercomingtheselimitations, which may provide for more robust sensors in the future [72]. SPR is not conducive for detection of whichmayprovideformorerobustsensorsinthefuture[72]. SPRisnotconducivefordetectionof amphiphiles in biologically relevant conditions, as required for diagnostic applications. amphiphilesinbiologicallyrelevantconditions,asrequiredfordiagnosticapplications. Interferometry, particularly Backscattering interferometry (BSI), allows for label-free detection Interferometry,particularlyBackscatteringinterferometry(BSI),allowsforlabel-freedetection of both surface-bound and free-solution molecules [73]. In BSI, excitation of a microfluidic channel ofbothsurface-boundandfree-solutionmolecules[73]. InBSI,excitationofamicrofluidicchannel containing the sample, as well as the channel surface, usually made of polydimethylsulfoxide or containingthesample,aswellasthechannelsurface,usuallymadeofpolydimethylsulfoxideorglass, glass, yields interference fringes. Changes in fringes associated with binding of two molecules are yieldsinterferencefringes. Changesinfringesassociatedwithbindingoftwomoleculesaremeasured measured in the backscatter region. BSI detects interactions of amphiphiles with lipid bilayers [74] inthebackscatterregion. BSIdetectsinteractionsofamphiphileswithlipidbilayers[74]directlyin directly in human serum [75]. However, in complex samples, non-specific interactions and humanserum[75]. However,incomplexsamples,non-specificinteractionsandassociatedchanges associated changes in refractive index can prove challenging, but can be limited using suitable inrefractiveindexcanprovechallenging,butcanbelimitedusingsuitablesurfacefunctionalization surface functionalization chemistry [76]. BSI is inexpensive, sensitive and very versatile, making it a chemistry[76]. BSIisinexpensive,sensitiveandveryversatile,makingitapromisingcandidatefor promising candidate for detection of amphiphilic biomarkers in patient samples. detectionofamphiphilicbiomarkersinpatientsamples. Ellipsometry measures the refractive index of a thin film, and has been utilized in label-free Ellipsometry measures the refractive index of a thin film, and has been utilized in label-free assays where changes in refracted light are measured upon interaction of giant lipid vesicles with a assayswherechangesinrefractedlightaremeasureduponinteractionofgiantlipidvesicleswitha ppoollyy--LL--llyyssiinnee cocoataetdeds usrfuarcfea,cue,s inugsianbgi oase nbsioorsebnassoedr obnastoetda lionnt ertnoatallr eflinetcetrionnali mraegfliencgtioelnli pismomageitnryg ellipsometry (TIRIE) [77]. This sensor can detect µm size particles such as cells, capsules and (TIRIE)[77]. Thissensorcandetectµmsizeparticlessuchascells,capsulesandliposomes. However, liposomes. However, the ability to detect such particles in tissues, as well as the overall clinical utility of this system is yet to be demonstrated. An optical assay based on UV absorption of lipid-functionalized gold nanorods has been used to detect the lipopeptide myristoyl-Lys-Arg-Thr-Leu-Arg, and a variety of other lipid biomarkers, in Biosensors2017,7,25 6of24 theabilitytodetectsuchparticlesintissues,aswellastheoverallclinicalutilityofthissystemisyetto bedemonstrated. Biosensors 2017, 7, 25 6 of 25 AnopticalassaybasedonUVabsorptionoflipid-functionalizedgoldnanorodshasbeenused stoerduemte c[7t8t]h. eHliopwopeveeprt,i dtheem lyorwis tsopyelc-Lifyicsi-tAy rogf- Tthhirs- Lleaube-Al-frrge,ea ntedchanviqauriee tryeqoufioreths emr laispsi dspbeioctmroamrkeetrrys, ainnasleyrsuims in[7 o8r]d.eHr ofowre mveurl,ttiphleelxoinwg stpoe tcaikfiec iptylaocef.t h islabel-freetechniquerequiresmassspectrometry analyIsni slainbeolredde rasfosaryms,u tlhtiep lteaxrignegt tmootalekceuplela icse .immobilized on the surface of a biosensor and then probeInd lawbietlhe daans saanyas,lythtee, tatyrgpeitcamlloyl eacnu leainstiimbomdoyb, icliozuedploend thtoe sau rlfaabceel o(ffaluboiroospenhsoorrea, nqdutahnetnumpr odboetd, wraidthioaisnotaonpael,y eten,ztyympiec)a [l7ly9]a. nMaunktuibnoddayn, ceot uapl.l ehdavteo eamlapbloely(efldu aonr oopphtiocrael, wquaavnegtuumided-obta,sreadd bioioissoetnospoer, menezaysmurei)n[g7 9o].nMlyu skuurnfadcaen-beotuanl.dh afvlueoermespcelonyte dsigannaolsp tfircoamlw laavbeegluedid ea-nbtaibseoddibeiso sfeonrs othrem seeanssuirtiinvge oannldy sspuerfcaifciec- bdoeutencdtioflnu oorfe lsicpeidnt asnigdn aamlspfrhoimphlialibce tlaerdgaetnst idbiordecietlsyf oinr tchliensiceanls sitaimvepalensd [s8p0e–c8i2fi]c. Tdhetise cstyiosntemof uliptiildizaens dthaem ipnhteiprahciltiicontasr goeft sthdeirseec tblyioimnacrlikneircsa lwsaimthp lliepsid[8 0b–il8a2y].erTsh iasnsdy sltiepmopurtoiltiezienss thtoe icnatpetruacrtei otnhsemof dthierescetblyio mtoa rktheers wwiatvhelgipuiiddbe ilasyuerfrascaen, dfloiplloopwreodte inbsyt opcraopbtiunrge thweimth dilraebcetlleydto-atnhteibwoadvieesg ueidxceisteudrf abcey, wfoallvoewgeudidbey-copuropbleindg lawseitrh lilgahbte l(eFdig-aunreti b2o).d Tiehsise xsycistteedmb hyaws abveeeng udideme-oconustpraletdedl atsoe reflfiegchtitv(eFliyg udreete2c)t. Tamhipshsiypshteilmic bhiaosmbaereknerds eamssooncsiatrtaetde dwtitoh eMffeycctoibvaecltyerdiuemte ctutbaemrcpulhoispish [i1li5c,8b3io],m Ma.r kboevriss a[s8s4o],c iEastcehderwichitiha cMolyi c[o8b5a]c, tSerailummonteulblae rTcyuplohsiism[u1r5i,u8m3], [M86.],b ionvfilsu[e8n4z]a, E[8sc7h],e rtiucmhiaorc omlia[r8k5e]r,sS [a8l8m,8o9n]e lolaftTenyptihmimesu driiruemctl[y8 6in], hinuflmueannz ase[r8u7m],,t upmroorvimngar kpeortse[n8t8ia,8l 9]uotifltietyn tiams esa ddirieacgtnlyosintich utmooaln [s8e0r,u8m2],. pTrhovesine gapsosateynst iahlauvtei libtyeeans maduilatigpnloesxteidc tofoolr [8t0h,e8 2]s.imThuelstaenaesosauyss hdaevteecbtieoenn mofu lstiepvleerxaeld bfoiormthaerskiemrsu lt[a8n1e].o uHsodweteevcteiro,n tohfes emvearianl dbiiosamdavraknetrasg[e8 1o]f. Husoinwge vlaebr,etlhede mreaaignednitssa idsv tahnet atigmeeo faundsi ncgoslta boef ltehder leaabgeelnintsg ipsrtohceetsism, eanadnd shcoelsft loiffet hoef tlahbee llainbeglepdro icnegsrse,dainedntssh [e9l0f]l.i f eofthelabeledingredients[90]. FFiigguurree 22.. IImmmmuunnooaassssaayy ssttrraatteeggiieess ttoo ddeetteecctt lliippiidd aanndd aammpphhiipphhiilliicc bbiioommaarrkkeerrss uussiinngg ((aa)) mmeemmbbrraannee iinnsseerrttiioonn oorr ((bb)) lliippoopprrootteeiinn ccaappttuurree.. 2.4.2. Electrochemical Biosensors Detecting Lipids 2.4.2. ElectrochemicalBiosensorsDetectingLipids Electrochemical sensing is a label-free method where an electrode is used to directly detect Electrochemical sensing is a label-free method where an electrode is used to directly detect associated reactions [91]. Electrochemical biosensors have had the greatest commercial success associatedreactions[91].Electrochemicalbiosensorshavehadthegreatestcommercialsuccess(glucose (glucose monitors) due to their low-cost, ease of use and miniaturization properties [92]. monitors)duetotheirlow-cost,easeofuseandminiaturizationproperties[92]. Amperometricsensors Amperometric sensors measure current typically as a result of electron transfer during the binding measurecurrenttypicallyasaresultofelectrontransferduringthebindingbetweenamolecule,and between a molecule, and chemically functionalized surface, as exemplified in the detection of LPS chemicallyfunctionalizedsurface, asexemplifiedinthedetectionofLPSusingredoxdiacetylenic using redox diacetylenic vesicles on a sol-gel thin-film electrode [93]. Another example is the vesicles on a sol-gel thin-film electrode [93]. Another example is the binding of cholera toxin to a binding of cholera toxin to a glycosphingolipid ganglioside GM1 coated gold surface, which has glycosphingolipidgangliosideGM1coatedgoldsurface,whichhasbeendevelopedintoasensitive, been developed into a sensitive, low-cost sensor [94]. Potentiometric sensors measure potential or low-costsensor[94]. Potentiometricsensorsmeasurepotentialorchargeaccumulationandhavebeen charge accumulation and have been used to detect lipid antigens [95] such as amphiphilic usedtodetectlipidantigens[95]suchasamphiphiliccholesterolusinglipidfilms[96,97],without cholesterol using lipid films [96,97], without interference from ascorbic acid, glucose, urea or other interference from ascorbic acid, glucose, urea or other proteins and lipids. In addition, label-free proteins and lipids. In addition, label-free electrochemical biosensors have been developed for the electrochemical biosensors have been developed for the detection of lipids such as low-density detection of lipids such as low-density lipoprotein (LDL) with high sensitivity and specificity [98– lipoprotein(LDL)withhighsensitivityandspecificity[98–100]. Thesesensorshavealsodisplayed 100]. These sensors have also displayed long-term stability and high reproducibility with small sample volumes, which make for a promising clinical tool. However, a problem with electrochemical detection of biomarkers is specificity of detection in complex biological samples, as these platforms are more sensitive to even small perturbations in the background, which is always a possibility in clinical measurements. Biosensors2017,7,25 7of24 long-termstabilityandhighreproducibilitywithsmallsamplevolumes,whichmakeforapromising clinicaltool.However,aproblemwithelectrochemicaldetectionofbiomarkersisspecificityofdetection incomplexbiologicalsamples,astheseplatformsaremoresensitivetoevensmallperturbationsinthe background,whichisalwaysapossibilityinclinicalmeasurements. 2.4.3. MechanicalBiosensorsDetectingLipids Mechanical biosensors provide rapid and sensitive measurements without extensive sample processing, ideal for clinical application. The two main mechanical sensing techniques are based oncantileverandquartzcrystalmicrobalances(QCM),bothofwhicharelabel-free. QCMdetects changesinresonancefrequencyonthesensorsurfacefromincreasedmassduetoanalyteminding[92]. QCM has been used to observe the formation of supported lipid bilayers in real-time [101] and lipid exchange between a bilayer and vesicle [102]. The latter measures mechanical bending of a receptor-functionalized microcantilever upon binding of the target molecule, as demonstrated for LPS[103]. Anotherexampleisthemeasurementoftheinteractionbetweenamyloid-βandthecell membraneasanearlyindicatorofAlzheimer'sdisease[104]. Amajordrawbacktocantileversensors isthattheyoftenoperateinair,ratherthanliquidsamples,limitingtheirclinicalutility. 3. LipidBiomarkersforInfectiousDiseases Rapiddiagnosisisimportanttohaltthespreadofbothendemicandemergingpathogens, as wellasmulti-drugresistantorganisms[105]. Infectiousdiseasesarecausedbybacterial,viral,fungal andparasiticorganismsandareroutinelydiagnosedusingculture,microscopy,serologyandgenetic tests[106],allofwhicharetime-consumingandperformedbytrainedlaboratorypersonnel. Several biosensors have been developed for diagnosis of infectious diseases [11], however all come with challenges that limit their application in the clinic. Many biomarkers associated with infectious diseasesareamphiphiles,whicharedifficulttodetect,especiallyinaqueousblood(Table2). Table2.Selectlipidandamphiphilicbiomarkersusedforthediagnosisofinfectiousdiseases. Biomarker Disease Location InteractingMolecules Reference Sepsis Blood LBP,HDL,LDL [107,108] Lipopolysaccharide holotransferrin [109] (LPS) Urinarytractinfection Urine n.d. [110] Antimicrobialresistance Anysample n.d. [111] Lipoteichoicacid HDL,LDL,VLDL [108,112] Sepsis Blood (LTA) LBP,holotransferrin [109] Lipoarabinomannan Urine n.d. [113] Tuberculosis (LAM) Blood HDL [15] Lipomannan(LM) Bovinetuberculosis Blood HDL [84] OmpK36porin Antimicrobialresistance Anysample n.d. [111] LBP,HDL,LDL,VLDL, Hemozoin(HZ) Malaria Blood apolipoproteinE, [114] α-1-antitrypin LBP:LPS-bindingprotein;HDL:high-densitylipoprotein;LDL:low-densitylipoprotein;VLDL:verylowdensity lipoprotein;n.d.:notdetermined. 3.1. Sepsis Sepsis is an infection of the bloodstream resulting in uncontrolled activation of the immune system[115]. Morbidityandmortalityresultsfromorganfailure,whichcanbeavoidedwithearly andeffectivetreatment,whichinturn,requiresrapiddiagnostics[116]. Thereareseverallipidand amphiphilicbiomarkersassociatedwithsepsis. LPS(alsoknownasendotoxin)isaclassicpathogen associated molecular pattern (PAMP) shed by Gram-negative bacteria. LPS activates the innate immunereceptor, Toll-likeReceptor2, resultinginacytokinecascade, whichisthemechanismof Biosensors2017,7,25 8of24 endotoxicshock[117]. ThepresenceofLPSinpatientbloodisaclearindicatorofsepsis. However, detectionofLPSinaqueousbloodiscomplicatedbythemolecule’samphiphilicbiochemistry,which drivesittoassociatewithhostcarrierlipoproteins[118]andothermoleculessuchasLPS-binding protein (LBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) and bactericidal/permeability-increasing protein [109]. Similarly, LTA is an amphiphiliccellwallcomponentofGram-positivebacteriawhosepresenceinbloodalsoindicates sepsis. StaphylococcusaureusLTAinhumanbloodpreferentiallybindstoHDL(68%), thentoLDL (28%),andminimallytoverylowdensitylipoprotein(4%)[112]. LBPalsobindstoLTA[109]. These associationscomplicatethedetectionofamphiphilicLPSandLTAinblood. 3.2. MycobacterialInfections Lipoarabinomannan(LAM)isabiomarkerfordiagnosisoftuberculosis(TB)[119–122]. LAMis anamphiphilicheatstablelipoglycan,whichformsanintegralcomponentofthemycobacterialcell wall[119,120],andissecretedduringTBinfection. LAMhasprovedtobeanexcellentdiagnostictarget especiallyinsmearnegativepatients(HIV-positive,pediatricpopulationandothers). Somelimitations of LAM include assay cross reactivity with common oral flora like Candida and Actinomyces that can result in lower predictive value of detection [123]. LAM assays can be improved using standardized sample processing methods and more sensitive sensor technology, as well as more specificantibodies[124]. LAMisreadilydetectedinurine[88,89],butnotinblood,likelybecause itassociateswithHDLinblood[15]. Tothisend,lipoproteincaptureassaysthatutilizeantibodies totargetHDLhavebeenusedtopulldownboundLAMinserumsamples[15,83,84]. Thismethod targetshostpathogeninteractions,andcanbeappliedtootheramphiphilicbiomarkersinblood[83]. Pathogen biomarker based measurements can be used in both human and animal hosts [84,113]. However,thehighcostofsuchtechnology,andbiochemicalnatureofLAMarecurrentchallengesto thedevelopmentofsuchassays[124]. 3.3. AntimicrobialResistance Theglobalspreadofantimicrobialresistanceunderlinestheneedforrapidandaccurateassays forthedeterminationofresistantorganismspriortoantibiotictreatment. Acommonmechanismof antibioticsisinhibitionofbacterialcellwallcomponents,whicharelipidoramphiphilicmolecules[125]. Modificationsofmembranelipidsarecommonmechanismsofantimicrobialresistanceinbacteria[126–128] andthedirectdetectionofsuchchangeswouldsupporteffectivetreatment. Infact,targetingPAMPs that are highly conserved, such as membrane lipids, for molecular diagnostics has a tremendous benefitoverapproachestargetingmorerapidlyevolvingaspectsofbacterialphysiology(i.e.,PCR). MALDI-TOF MS has been used to detect antibiotic resistance caused by lipid alterations [111]. E.g.,detectionofLPSalterationsthatreducethemoleculesnetnegativechargeresultinginresistance toantimicrobialpeptidessuchascolistin,andOmpK36porinlossinKlebsiellapneumoniaeresulting inresistancetocarbapenems. However,theinitialcostofsettingupaclinicalMALDI-TOFsystemis prohibitivetowardapplicationinroutinediagnosticsettings. 3.4. Malaria Hemozoin is an insoluble amphiphilic crystalline byproduct formed from the degradation of bloodbyparasitessuchasPlasmodiumfalciparum,thecausativeagentofmalaria[114]. Hemozoinis releasedintocirculationuponerythrocytelysis,anditspresenceinpatientbloodisadirectindication ofmalarialinfection[129]. Detectionofhemozoinhasmostlybeenachievedusingmicroscopyand flowcytometryinblood[130]. Theamphiphilicnatureofhemozoinhampersitsdirectdetectionin bloodduetosequestrationbyhostimmunecomponents[129]suchasapolipoproteinEandLBP[114]. MethodslikeLipoproteincapturecanpotentiallybeadaptedforthedetectionofamphiphilichemozoin inblood. Biosensors2017,7,25 9of24 4. LipidBiomarkersforNon-infectiousDiseases Non-infectiousdiseasesincludingcancerandcardiovasculardisordersarearesultofamalfunction in normal physiological processes. Therefore, identifying specific biomarkers for diagnosing non-infectiousdiseasespresentsamajorchallenge. Ratherthantargetingaforeignmoleculethatis absentinahealthypatient,thediagnosisofnon-infectiousdiseasesoftenmeasuresirregularitiesin expressionofhost-derivedmolecules[131,132]. Manylipidandamphiphilicmoleculesassociated withhumanmetabolismcanbeusedasbiomarkerswhendifferentiallydetectedindiseasedversus healthy individuals (Table 3). Detection of such biomarkers can potentially be used to determine prognosis,monitorrecurrence,evaluatediseaseprogression,andpredictapatient’sriskofdeveloping aparticulardisease[133]. Table3.Selectlipidandamphiphilicbiomarkersusedfordiagnosingnon-infectiousdiseases. Interacting Biomarker Disease Location Reference Lipoproteins Cholesterol Cardiovasculardisease Blood HDL,LDL [134,135] Cancer Blood HDL,LDL [136–143] Preeclampsia Blood HDL,LDL [144–147] Lipotoxicity Blood HDL,LDL [148] Triglycerides(TG) Cardiovasculardisease Blood LDL,VLDL [132,149,150] Cancer Blood LDL,VLDL [136–143] Preeclampsia Blood LDL,VLDL [144–147] Lipotoxicity Blood LDL,VLDL [148,151,152] Cardiolipin(CL) Cardiovasculardisease Blood LDL,HDL,VLDL [153] Braintissue, Cancer n.d. [37,154] Prostatetissue HDL: high-density lipoprotein; LDL: low-density lipoprotein; VLDL: very low density lipoprotein; n.d.:notdetermined. 4.1. CardiovascularDiseasesandDisorders Cardiovascular diseases (CVD) [155] account for 17.5 million deaths, accounting for 31% of alldeathsworldwide[155]. Heartattacksandstrokes, mainlycausedbyablockagethatprevents bloodfromflowingtotheheartorbrainaccountforabout80%ofallCVDdeaths. Inmanycases, dyslipidemia, or abnormal levels of lipids in the blood, is a major mediator of CVD [156,157]. Itistypicallycharacterizedbyincreasedlevelsoftotalcholesterol, increasedlevelsoflowdensity lipoproteincholesterol(LDL-C),increasedlevelsofTG,decreasedlevelsofhighdensitylipoprotein cholesterol(HDL-C),modifiedfunctionoflipidmolecules,oracombinationofsomeorallofthese factors [156–158]. Cholesterol is a major component of cell membranes, and contributes to their structural integrity and fluidity [131]. Cholesterol is also a precursor of vitamin D and important steroid hormones such as progesterones, glucocorticoids (cortisol), androgens (testosterone) and estrogens [131,159]. Cholesterol homeostasis is critical to cardiovascular health. High cholesterol can raise CVD risk [135,160], by creation of sticky plaque deposits along arterial walls, eventually blockingbloodflow[125,160],causingheartattacksandstrokes. LDLandHDLareimportantcarriers ofcholesterol. IncreasedlevelsofLDL-Ccancausecholesterolbuildupinarteries,resultingintheir narrowing,raisingcardiovascularrisk[161]. HDLisascavenger,carryingcholesterolawayfromthe arteriesandbacktotheliverforbreakdown[134]. AhighTGlevelcombinedwithhighLDL-Cand lowHDL-Cislinkedwithfattybuildupsinarterywalls[132,149,150]. AssessingCVDrisklargelyinvolvesserumlipidprofiling,focusedonmeasuringtotalcholesterol, HDL-C, LDL-C, and TG levels [162], largely by use of labeled optical immunoassay platforms. Forinstance,theAlereCholestechLDX®Systemcombinesenzymaticopticaldetectionwithsolid-phase technologytorapidlyandsensitivelymeasuretotalcholesterol,HDLcholesterol,triglyceridesand glucoseinafingerprickofblood[163]. Cholesterolismeasuredenzymaticallyinseruminaseries of coupled reactions that hydrolyze cholesteryl esters and oxidize the 3-OH group of cholesterol,
Description: